Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.5.8

Optimization Study for Material Properties of Piezoelectric Material Using Parameter Estimation Method: Part I. Polycrystal PZT Ceramics  

Shin, Ho-Yong (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Ho-Yong (Department of Advanced Material Engineering, Sunmoon University)
Hong, Il-Gok (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Jong-Ho (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology)
Im, Jong-In (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.5, 2022 , pp. 471-479 More about this Journal
Abstract
Recently, piezoelectric devices, such as ultrasonic surgery, ultrasonic atomizer, and ultrasonic speaker, are analyzed and designed by finite element simulation methods. However, the discrepancy between the design and the experiment results of the device typically occurs due to the inaccuracy of the piezoelectric material properties. To improve the simulation accuracy, the material properties of the PZT ceramics were better refined using parameter estimation method. The material parameters are elastic stiffness cEij and piezoelectric constant eij of PZT ceramics. The impedance curve characteristics for the LTE mode of PZT ceramics were calculated. The mismatch between the simulation and the experimental data were compared and minimized by a least square method. Finally, the simulated impedance data were compared with the experimental data for the various vibration modes of PZT ceramics and the optimized material properties of PZT ceramics were verified. To further verify the accuracy, this method was also applied to piezoelectric PMN-PT single crystals.
Keywords
PZT ceramics; Piezoelectric material properties; Impedance characteristics; Parameter estimated optimization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Li, Y. Chen, F. Boey, and J. Ma, Sensors and Actuators A: Physical, 134, 544 (2007). [DOI: https://doi.org/10.1016/j.sna.2006.06.032]   DOI
2 K. Tanaka, Y. Tanaka, H. Shiomi, Y. Kurumi, and T. Tani, Procedia Engineering, 47, 366 (2012). [DOI: http://dx.doi.org/10.1016/j.proeng.2012.09.159]   DOI
3 X. Liao, Z. Qiu, T. Jiang, M.R. Sadiq, Z. Huang, C.E.M. Demore and S. Cochran, Materials, 8, 8304 (2015). [DOI: https://doi.org/10.3390/ma8125456]   DOI
4 M. Stewart and M. G. Cain, Direct Piezoelectric Measurement: The Berlincourt Method. Characterisation of Ferroelectric Bulk Materials and Thin Films (Springer: Dordrecht, 2014), pp. 37-64.
5 H. J. McSkimin, J. Acoust. Soc. Am., 33, 606 (1961). [DOI: https://doi.org/10.1121/1.1908740]   DOI
6 B. Kaltenbacher, M. Kaltenbacher, R. Lerch, and R. Simkovics, Proc. 2000 IEEE Ultrasonics Symposium (San Juan, Puerto Rico, 2000). [DOI: https://doi.org/10.1109/ULTSYM.2000.921501]   DOI
7 D. Kybartas and A. Lukosevicius, Ultragarsas, 45, 22 (2002).
8 H. W. Joo, C. H. Lee, J. S. Rho, and H. K. Jung, IEEE Trans. Ultrason. Ferr., 50, 965 (2003). [DOI: https://ieeexplore.ieee.org/document/1226540]
9 B. G. Ahn, D. K. Lee, D. Y. Han, C. Y. Kang, J. W. Choi, H. J. Kim, and S. J. Yoon, Journal of the Korean Ceramic Society, 40, 225 (2003). [DOI: https://doi.org/10.4191/kcers.2003.40.3.225]   DOI
10 H. W. Joo, C. H. Lee, and H. K. Jung, Ultrasonics, 43, 13 (2004). [DOI: http://dx.doi.org/10.1109/TUFFC. 2003.1226540]   DOI
11 B. Kaltenbacher, T. Lahmer, M. Mohr, and M. Kaltenbacher, Eur. J. Appl. Math., 17, 383 (2006). [DOI: https://doi.org/10.1017/S0956792506006474]   DOI
12 T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, R. Lerch, and E. Leder, IEEE Trans. Ultrason. Ferr., 55, 465 (2008).
13 S. J. Rupitsch and R. Lerch, Appl. Phys. A., 97, 735 (2009). [DOI: https://doi.org/10.1007/s00339-009-5438-1]   DOI
14 B. Jaffe, W. R. Cook Jr. and H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, 1971).
15 J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1985).
16 ANSI/IEEE Standard No. 176-1987 IEEE Standard on Piezoelectricity, IEEE, New York, 1987.
17 O. B. Wilson, Introduction to Theory and Design of Sonar Transducers (Peninsula Press, LosAltos, 1988).
18 R. E. Newnham, Properties of Materials: Anisotropy (Symmetry, Structure, Oxford, New York, 2005).
19 K. W. Kwok, H.L.W. Chan, and C. L. Choy, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44, 733 (1997). [DOI: https://doi.org/10.1109/58.655188]   DOI
20 R. Zhang, B. Jiang, and W. W. Cao, J. Appl. Phys., 90, 3471 (2001). [DOI: https://doi.org/10.1063/1.1390494]   DOI
21 S. H. Lee and Y. R. Roh, The Journal of the Acoustical Society of Korea, 23, 103 (2004). [DOI: https://doi.org/10.7776/ASK.2011.30.7.368]   DOI
22 C. Joh, J. Kim, and Y. Roh, Smart Mater. Struct., 22, 12 (2013). [DOI: https://doi.org/10.1088/0964-1726/22/12/125027]   DOI
23 M. Wild, B. Martin, H. Einar, H. Lars, and H. Karina, J. Acoust. Soc. Am., 144, 2128 (2018). [DOI: https://doi.org/10.1121/1.5057443]   DOI
24 L. Li, L. K. Wang, L. Qin, and Y. Lv, IEEE Trans, U.F.F.C., 56, 1476 (2009). [DOI: https://doi.org/10.1109/TUFFC.2009.1203]   DOI
25 M. J. Zipparo and C. G. Oakley, Proc. IEEE Ultrason Sym. (IEEE, Atlanta, GA, USA, 2001) p. 1017. [DOI: https://doi.org/10.1109/ULTSYM.2001.991892]   DOI
26 J. Kim, S. Pyo, and Y. Roh, The Journal of the Acoustical Society of Korea, 30, 368 (2011). [DOI: https://doi.org/10.7776/ASK.2011.30.7.368]   DOI
27 D. Berlincourt and H.H.A. Krueger, Proc. Properties of Morgan Electro Ceramic Ceramics (Tech. Publication TP-226, Cleveland, OH, USA, 2002).