Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.12.943

Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever  

Kim, Kyoung-Bum (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Chang-Il (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Yun, Ji-Sun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Jeong, Young Hun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Nahm, Jung Hee (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Cho, Jeong-Ho (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Paik, Jong-Hoo (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
Seong, Tae-Hyeon (Department of Electrical Engineering, Hanyang University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.12, 2012 , pp. 943-948 More about this Journal
Abstract
A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.
Keywords
Tape casting; PZT; Bimorph; Energy harvesting; Water energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. R. Anton and H. A. Sodano, Smart Mater. Struct., 16, R1 (2007).   DOI
2 N. S. Shenck and J. A. Paradiso, IEEE Micro, 21, 30 (2001).   DOI   ScienceOn
3 J. Feenstra, J. Granstrom, and H. Sodano, Mechanical Systems and Signal Processing, 22, 721 (2008).   DOI
4 P. X. Gao, J. Song, J. Liu, and Z. L. Wang, Adv. Mater., 19, 67 (2007).   DOI
5 Z. L. Wang and J. Song, Science, 312, 242 (2006).   DOI   ScienceOn
6 H. C. Song, H. C. Kim, C. Y. Kang, H. J. Kim, S. J. Yoon, and D. Y. Jeong, J. Electroceram., 23, 301 (2009).   DOI
7 Priya, IEEE Trans. Ultra. Ferroelec. Freq. Cont., 57, 2610 (2010).   DOI   ScienceOn
8 R. Guigon, J. J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct., 17, 015038 (2008).   DOI
9 J. J. Allen and A. J. Smits, J. Fluids Struct., 15, 629 (2001).   DOI
10 J. H. Gerrard, J. Fluid Mech., 25, 401 (1966).   DOI
11 H. Techet-Alexandra, J. Allen-James, and J. Smits-Alexander, In Proceedings of the International Offshore and Polar Engineering Conference, 2002.
12 R. Guigon, J. J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct., 17, 015039 (2007).
13 G. Taylor, U.S. Patent, 4404490 (1983).
14 N. Shinjo, PhD. Dissertation, Florida Institute of Technology (2005).
15 S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Proc. SPIE-EAPAD, 6927, 692715 (2008).
16 S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Proc. SPIE-EAPAD, 6524, 652424 (2007).
17 K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1997) p. 129.
18 Phillips Components, Piezo Ceramic Products (Technical Information, 2000) p. 3.
19 C. M, Kim, Master Thesis, p. 95-110, Yonsei University, Seoul (2010).
20 K. B. Kim, C. I. Kim, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, and S. Nahm, J. Eur. Ceram. Soc., (In press)