Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.10.766

Energy Harvesting Characteristics of Spring Supported Piezoelectric Cantilever Structure (SPCS)  

Kim, Kyoung-Bum (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Chang-Il (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Jeong, Young-Hun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Lee, Young-Jin (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Cho, Jeong-Ho (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Paik, Jong-Hoo (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
Seong, Tae-Hyeon (Department of Electrical Engineering, Hanyang University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.10, 2012 , pp. 766-772 More about this Journal
Abstract
Spring supported piezoelectric cantilever structures (SPCS) were fabricated for vibration-based energy harvester application. We selected four elastic springs (A, B, C, and D type) as cantilever's supporter, each elastic spring has a different spring constant (S). The C type of SPCS ($S_C$: 4,649 N/m) showed a extremely low resonance frequency of 81 Hz along with the highest power output of 38.5 mW while the A type of SPCS ($S_A$: 40,629 N/m) didn't show a resonance frequency while. Therefore, it is considered that the lower spring constant lead to a lower resonance frequency of the SPCS. In addition, a tip mass (18 g) at one end of the SPCS could further reduce the resonance frequency without heavy degradation of power output.
Keywords
Piezoelectric energy harvester; PZT-C/N; Bimorph cantilever; Spring;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006).   DOI
2 I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 1 (2011).   DOI
3 I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 1 (2011).   DOI
4 H. C. Song, H. C. Kim, C. Y. Kang, H. J. Kim, S. J. Yoon, and D. Y. Jeong, J. Electroceram., 23, 301 (2009).   DOI
5 W. G. Li and S. He, IEEE Trans. Ind. Electron., 57, 868 (2010).   DOI
6 X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett., 10, 2133 (2010).   DOI   ScienceOn
7 G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers, and T. R Welsh, IEEE J. Oceanic Eng., 26, 539 (2001).   DOI   ScienceOn
8 H. Lee, P. K. T. Mok, and W. H. Ki, Proceedings of IEEE International Symposium on Circuits and Systems (Geneva, Switzerland, 2000) p. 256.
9 B. H. Calhoun, D. C. Daly, N. Verma, D. F. Finchelstein, D. D. Wentzloff, A. Wang, S. H. Cho, and A. P. Chandrakasan, IEEE Trans. Comput., 54, 727 (2005).   DOI
10 M. Goldfarb and L. D. Jones, Trans. ASME, J. Dyn. Syst. Meas. Control, 121, 566 (1999).   DOI
11 K. Sato, K. Okamoto, Y. Fuda, and T. Yoshida, Jpn. J. Appl. Phys., 33, 5378 (1994).   DOI
12 M. Umeda, K. Nakamura, and S. Ueha, Jpn. J. Appl. Phys., 35, 3267 (1996).   DOI
13 M. Umeda, K. Nakamura, and S. Ueha, Jpn. J. Appl. Phys., 36, 3146 (1997).   DOI
14 H. A. Sodano, D. J. Inman, G. Park, Shock Vibr. Dig., 36, 197 (2004).   DOI
15 H. A. Sodano, G. Park, and D. J. Inman, Strain, 40, 49 (2004).   DOI
16 H. Kim, S. Priya, K. Uchino, and R. E. Newnham, J. Electroceram., 15, 27 (2005).   DOI
17 G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieture, IEEE Trans. Power Electron., 17, 669 (2002).   DOI   ScienceOn
18 R. Islam and S. Priya, Appl. Phys. Lett., 88, 0329 (2006).
19 X. Gao, W. H. Shih, and W. Y. Shih, Appl. Phys. Lett., 97, 233503 (2010).   DOI   ScienceOn
20 L. Mateu and F. Moll, J. Intell. Mater. Syst. Struct., 16, 835 (2005).   DOI
21 H. Shen, J. Qiu, and M. Balsi, Sensor. Actuat., A169, 178 (2011).