• Title/Summary/Keyword: Ceramic-electrode Interface

Search Result 42, Processing Time 0.019 seconds

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

Preparation and properties of Bi-based lead-free ceramic multilayer actuators

  • Nguyen, Van-Quyet;Han, Hyoung-Su;Lee, Han-Bok;Yoon, Jong Il;Ahn, Kyoung Kwan;Lee, Jae-Shin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.282-285
    • /
    • 2012
  • Lead-free (Bi0.5Na0.41K0.09)TiO3 (BNKT) multilayer ceramic actuators were prepared using tape-casting and screen-printing techniques. Co-firing behavior of BNKT/AgPd laminates was examined as a function of sintering temperature. It was found that co-firing induced bending and electrical properties were very sensitive to sintering condition. By optimizing sintering conditions, lead-free electrostrictive multilayer actuators with normalized strain Smax/Emax of 266 pm/V have been successfully fabricated, which is promising for lead-free actuator applications.

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young;Lee, Kwi-Jong;Kang, Suk-Joong L.
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.405-410
    • /
    • 2013
  • During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

Ionic Conductivity by A Complex Admittance Method

  • Chy Hyung Kim;Eung Dong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.495-500
    • /
    • 1989
  • The ionic conductivity of polycrystalline, glass, and glass-ceramic silicates was measured using two-terminal AC method with blocking electrode over a frequency range of 100 Hz to 100 KHz in the temperature range of $200^{\circ}C$ to $320^{\circ}C$. Analysing the capacitance (C), susceptance (B), impedance (Z), and conductance (G) under the given conditions, an equivalent circuit containing temperature and frequency dependent component is proposed. Higher capacitance could be observed in the low frequency region and on the improved ionic migration conditions i.e., at higher temperature in a better ionic conductor. Also the electrode polarization built up at the electrode-specimen interface could be sorted out above 10 KHz. However, grain boundary contribution couldn't be extracted from the bulk resistance over the frequency range measured here.

Joining and properties of electrode for CoSb3 thermoelectric materials prepared by a spark plasma sintering method (방전 플라즈마 소결법을 이용한 CoSb3계 열전재료의 전극 접합 및 특성)

  • Kim, K.H.;Park, J.S.;Ahn, J.P.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2010
  • $CoSb_3$-based skutterudite compounds are promising candidates as thermoelectric (TE) materials used in intermediate temperature region. In this study, sintering of $CoSb_3$ powder and joining of $CoSb_3$ to copper-molybdenum electrode have been simultaneously performed by spark plasma sintering technique. The Ti foil was used for preventing the diffusion of copper into $CoSb_3$ and the Cu : Mo = 3 : 7 Vol. ratio composition was selected by the consideration of thermal expansion coefficients. The insertion of Ti interlayer between Cu-Mo and $CoSb_3$ was effective to join $CoSb_3$ to Cu-Mo by forming an intermediate layer of $TiSb_2$ at the Ti-$CoSb_3$ boundary. However, the formation of TiSb and TiCoSb intermediate layers deteriorated the joining properties by the generation of cracks in the interface of intermediate layer/$CoSb_3$ and intermediate/intermediate layers.

Bonding Strength of Conductive Inner-Electrode Layers in Piezoelectric Multilayer Ceramics

  • Wang, Yiping;Yang, Ying;Zheng, Bingjin;Chen, Jing;Yao, Jinyi;Sheng, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.181-184
    • /
    • 2017
  • Multilayer ceramics in which piezoelectric layers of $0.90Pb(Zr_{0.48}Ti_{0.52})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.05Pb(Zn_{1/3}Nb_{2/3})O_3$ (0.90PZT-0.05PMS-0.05PZN) stack alternately with silver electrode layers were prepared by an advanced low-temperature co-fired ceramic (LTCC) method. The electrical properties and bonding strength of the multilayers were associated with the interface morphologies between the piezoelectric and silver-electrode layers. Usually, the inner silver electrodes are fabricated by sintering silver paste in multi-layer stacks. To improve the interface bonding strength, piezoelectric powders of 0.90PZT-0.05PMS-0.05PZN with an average particle size of $23{\mu}m$ were added to silver paste to form a gradient interface. SEM observation indicated clear interfaces in multilayer ceramics without powder addition. With the increase of piezoelectric powder addition in the silver paste, gradient interfaces were successfully obtained. The multilayer ceramics with gradient interfaces present greater bonding strength as well as excellent piezoelectric properties for 30~40 wt% of added powder. On the other hand, over addition greatly increased the resistance of the inner silver electrodes, leading to a piezoelectric behavior like that of bulk ceramics in multilayers.

The preparation and Characterization of Bismuth Layered Ferroelectric Thin Films by Sol-Gel Process (솔-젤법을 이용한 Bismuth Layered Structure를 가진 강유전성 박막의 제조 및 특성평가에 관한 연구)

  • 주진경;송석표;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.945-952
    • /
    • 1998
  • Ferroelectric Sr0.8Bi2.4Ta2O9 stock solutions were prepared by MOD(Metaloganic Decompostion) process. The phase transformation for the layered perovskite of the SBT thin films by changing RTA(Rapid her-mal Annealing) temperatuer from 700$^{\circ}C$to 780$^{\circ}C$ were observed using XRD and SEM. Layered perovskite phase began to appear above 740$^{\circ}C$ and then SBT thin films were annealed at 800$^{\circ}C$ for 1hr for its com-plete crystallization. The specimens showed well shaped hysteresis curves without post annealing that car-ried out after deposition of Pt top electrode. The SBT thin films showed the asymmetric ferroelectric pro-perties. It was confirmed that the properties were caused by interface effect to SBT and electrode by leak-age current density measurement and asymmetric properties reduced by post annealing. At post annealing temperature of 800$^{\circ}C$ remanant polarization values (2Pr) were 6.7 9 ${\mu}$C/cm2 and those of leakage current densities were 3.73${\times}$10-7 1.32${\times}$10-6 A/cm2 at 3, 5V respectively. Also bismuth bonding types of SBT thin film surface were observed by XPS.

  • PDF

Electrical Properties of p-GaAs Photoelectrode for Solar Energy Conversion (태양광 변환을 위한 p형 GaAs 광전극의 전기적 특성)

  • 윤기현;이정원;강동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1262-1268
    • /
    • 1995
  • Photoelectrochemical properties of p-GaAs electrode have been investigated. I-V characteristic shows that the cathodic photocurrent is observed at -0.7 V vs. SCE. The photoresponse at near 870~880nm wavelength indicates that the photogenerated carriers contibuted to the observed current. The maximum converson efficiency of 35% is obtained for a Xe lamp light source at 400nm. In C-V relation, capacitance peaks appeared at the frequencies of 100Hz and 300Hz due to the activation of the interfacial states which exist at the energy level corresponding to the one-third of the GaAs band gap. The difference of about 1.1V between flatband potential (Vfb) from the Mott-Schottky method and onset voltage from I-V curve is observed due to the trap of carriers at the interfacial states in the boundary between GaAs and electrolyte. In case of WO3 deposited p-GaAs electrode, higher positive onset current and photocurent density are obtained. This can be explained by the fact that carriers are generated by light penetrated into the WO3 thin flm as well as p-GaAs substrate and then move into the electrolyte effectively.

  • PDF

Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries

  • Ann, Jiu;Choi, Sunho;Do, Jiyae;Lim, Seungwoo;Shin, Dongwook
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.413-418
    • /
    • 2018
  • All-solid-state lithium batteries (ASSBs) using inorganic sulfide-based solid electrolytes are considered prospective alternatives to existing liquid electrolyte-based batteries owing to benefits such as non-flammability. However, it is difficult to form a favorable solid-solid interface among electrode constituents because all the constituents are solid particles. It is important to form an effective electron conduction network in composite cathode while increasing utilization of active materials and not blocking the lithium ion path, resulting in excellent cell performance. In this study, a mixture of fibrous VGCF and spherical nano-sized Super P was used to improve rate performance by fabricating valid conduction paths in composite cathodes. Then, composite cathodes of ASSBs containing 70% and 80% active materials ($LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$) were prepared by a solution-based process to achieve uniform dispersion of the electrode components in the slurry. We investigated the influence of binary carbon additives in the cathode of all-solid-state batteries to improve rate performance by constructing an effective electron conduction network.

Joining of 8 mol% YSZ Solid Electrolyte and Perovskite LaMnO3 (8 mol% YSZ 고체전해질과 페로프스카이트 $LaMnO_3$와의 접합)

  • 김명철;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.377-382
    • /
    • 1992
  • For the development of solid oxide fuel cell the joined interface formation between perovskite oxygen electrode and YSZ solid electrolyte is emphasized in the aspect of reducing the undisirable overpotential. The diffusion couple of LaMnO3 and YSZ was prepared by hot pressing at 130$0^{\circ}C$ in the flow of oxygen gas. The high temperature solid state reaction mechanism between LaMnO3 and YSZ is discussed on the basis of the cation composition profile through EDX analysis. The cation components in perovskite compound diffuse considerably into YSZ, while cations of YSZ diffuse little into perovskite.

  • PDF