• Title/Summary/Keyword: Ceramic wear

Search Result 348, Processing Time 0.032 seconds

Macroscopic Wear Characteristics of Ceramics under the Rolling Contact (구름접촉시 세라믹의 거시적 마모특성)

  • Kim, Seock-Sam;Koto, Kohji;Hokkirigawa, Kzauo
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 1989
  • The wear tests of ceramic materials in dry rolling contact were carried out at room temperature to investigate their macroscopic wear characteristics. Both point contact and line cootact were adapted in the wear tests of them. Ceramic materials used in these tests were silicon nitride, silicon carbide, cermet of TiN and TiC, titania, and alumina. The wear test of the bearing steel was carried out to compare to the wear test results of the ceramic materials. The results showed that the wear rate of silicon nitride was smaller than any other ceramic materials and bearing steel. In the steady wear, the wear volume of ceramic materials increases linearly with the rolling distance. It was also found from the experimental results that fracture toughness and surface roughness dominate the wear process of ceramic materials in dry rolling contact.

A Study on the Cutting Characteristics in the Machining of SKD11 by Face Milling (난삭재인 SKD11의 정면밀링 가공시 절삭특성에 관한 연구)

  • 김형석;문상돈;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.73-78
    • /
    • 1994
  • Wear and fracture mode of ceramic tool for hardened SKD11 steel was investigated by face milling in this study. The cutting force and Acoustic Emission(AE) signal were utilized to detect the wear and fracture of ceramic tool. The following conclusions were obtained : (1) The wear and fracture modes of ceramic tool are characterized by three types: \circled1wear which has normal wear and notch wear, \circled2 wear caused by scooping on the rake face, \circled3 large fracture caused by thermal crack in the rake face. (2) The wear behaviour of ceramic tool can be detected by the increase of mean cutting force and the variation of the AE RMS voltage. (3) The catastrophic fracture of ceramic tool can be detected by the cutting force(Fz-component). (4) As the hardness of work material increased, Acoustic Emission RMS value and mean cutting force(Fz) increased linearly, but the tool life decreased.

  • PDF

Ceramic-Ceramic Wear of Zirconia/Alumina Composites for the Application of Total Hip Replacement (인공 고관절 골두용 세라믹 복합재료에 대한 세라믹-세라믹 접촉 마멸 특성 분석)

  • Lee Kwon-Yong;Kim Hwan;Kim Dae-Jun;Lee Myong-Hyon;Seo Won-Seon
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.216-220
    • /
    • 2005
  • The sliding wear behaviors of three different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were examined in a ceramic-ceramic contact pair. The wear tests were performed by using a pin-on-disk type wear tester in a linear reciprocal sliding motion with a line contact in both dry and bovine serum lubricated conditions at room temperature. From the results of dry sliding wear tests, Z/A#1((5.3Y, 4.6Nb)-TZP/80 $vol\%Al_2O_3$) showed the best wear resistance among three kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic-ceramic contact pairs of femoral head and acetabular liner in total hip replacement.

Effects of Titania Whisker Precipitation on Wear Property of the Glass-Ceramic (타이타니아 단섬유상의 석출이 결정화유리의 마모특성에 미치는 영향)

  • 이경호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.192-202
    • /
    • 1996
  • In Li0.4Ca0.05AlP0.5Si0.75O4.5 composition glass, glass-ceramic having a near 100% crystallinity after nucleation heat treatment of 74$0^{\circ}C$/2 h and crystallization heat treatment of 90$0^{\circ}C$/2 h and in-situ TiO2 whisker reinforced glass-ceramic after heat treatment of 105$0^{\circ}C$ for 20 h were fabricated with the addition of 4% TiO2 as a nucleating agent. With these materials a ball-on-disc type wear test was conducted in order to examine the effect of TiO2 whisker prepcipitation on ambient and high temperature wear properties of the glass-ceramic. Wear test results indicated that all specimens exhibited micro-fracture wear mechanism in ambient temperature. As temperature increased the wear rates of the materials were increased. However the in-situ TiO2 whisker reinforced glass-ceramic exhibited the lowest wear rate over the test temperature range. This resulted from the improvement of harness and fracture toughness of the material as the glass converted into the glass-ceramic followed by precipitation of TiO2 whiskers throughout the glass-ceramic matrix.

  • PDF

The Assessment of Ceramic Wear by the Parameter Scf (Scf 파라메타에 의한 세라믹 마멸 평가)

  • 김상우;김석삼
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 1996
  • The result of wear test for ceramic materials was assessed by Scf parameter to verify the usefulness of the proposed Scf parameter. Friction and wear tests were carried out with ball on disk type. The materials used in this study were HIPed Alumina $(Al_2O_3)$, Silicon carbide (sic), Silicon nitride $(Si_3N_4)$ and Zirconia $(ZrO_2)$. The tests were carried out at room temperature with self mated couples of ceramic materials under lubricated condition. Turbine oil was used as a lubricant. In this test, increasing the load, specific wear rates and wear coefficients of four kinds of ceramic materials had a tendency to increase. The wear coefficients of ceramic materials were in order of $Al_2O_3, SiC, Si_3N_4, ZrO_2$. Worn surfaces investigated by SEM had residual surface cracks and wear particles caused by brittle fracture. As the fracture toughness of ceramic materials was higher, wear resistance more increased. The roughness of worn surface had correlation with wear rate. The wear rate(W$_{s}$) and Scf parameter showed linear relationship in log-log coordinates and the wear equation was given as $W_s = 5.52 $\times$ Scf^{5.01}$.

Friction and Wear at Ceramic Coated Surfaces of Aluminum Alloy (알루미늄 합금표면에 코팅된 세라믹재의 마찰마멸 특성)

  • 공호성;권오관;김형선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3083-3093
    • /
    • 1993
  • Friction and wear at ceramic coated surfaces of aluminum alloy were experimentally studied using a Ring-on-Block wear test machine. Ceramic materials coated on aluminum alloy surfaces were WC, CrC, $Al_{2}O_{3}$ by a plasma spray; and $Al_{2}O_{3}$,$Al_{2}SiO_{5}$, $Na_{2}B_{4}O_{7}$,$Na_{4}P_{2}O_{7}$, and $Al_{2}O_{3}-ZrO_{2}$ composite coating by an Anodic Spark Depositon. They were tested under the sliding wet contact and compared with aluminum alloys and steels. Test results showed that ceramic coated surfaces, in general, have better anti-wear property than those of aluminum alloys due to increase in the surface hardness ; however, they also showed higher coefficients of friction and changes in wear mechanisms, resulting in brittle fractures.

A Study on the Failure Characteristics of Ceramic Tool for Hardened Steels (경화강에 대한 세라믹공구의 손상특성에 관한 연구)

  • 김광래;유봉환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.30-37
    • /
    • 1997
  • This thesis is concerned with the study on the characteristics of the tool failure occuring at the beginning of cutting in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool (Al$_{2}$O$_{3}$+TiC) with nose radius. In the machining of hardened carbon steel STC3, the wear mechanism on the flank face of the ceramic tool is abrasion wear. The mode of tool failure is developed into catastropic fracture with flaking. It is thought that the fracture caused by FeO and TiO$_{2}$ results from the oxidation of Fe in the workpice and TiC in the ceramic tool and the deposit of Fe formed on the surface of the ceramic tool. In the machining of hardened alloy steel STD11, the wear mechanism on the flank face of the ceramic tool is that abrasion and adhesion wear exist simultaneously. The mode of tool failure at the beginning of cutting features is DOC notch wear. It is thought that the DOC notch wear caused by FeO and TiO$_{2}$results from the oxidation of Fe and TiC in the workpiece and ceramic tool, respectively.

  • PDF

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.

Tribology for All-Ceramic Joint Prostheses

  • Ikeuchi, K.;Kusaka, J.;Yoshida, H.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.165-177
    • /
    • 2000
  • Ceramic on ceramic total hip prostheses are developed to apply to young patients because lifetime of polyethylene joint prostheses is limited by loosening due to biological response. As mating faces of all-ceramic joint must be highly conformed to reduce stress concentration, wear properties of flat surfaces are investigated in this study. Through wear tests at 2 MPa of contact pressure and 36 mm/s of sliding velocity, alumina and silicon carbide keep low wear rate, high hardness and smooth surface. Soft surface film was detected after the test in bovine serum. This suggests that boundary lubrication is effective to reduce wear in all-ceramic joint.

  • PDF

A Study on the Wear of Ceramic Tool in Finish Machining of STD11 Steel (STD11강의 다듬질절삭에 의한 세라믹공구의 마멸에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.46-53
    • /
    • 1995
  • In this study, Wear of a ceramic cutting tool for hardened STD11 steel was investigated. Under the finish machining condition. DOC notch wear of a ceramic cutting tool was mostly occurred earlier than flank and crater wear were proceeded. The relations of DOC notch wear, which was characteristically produced at the beginning of cutting. to cutting speed, feed, depth of cut, and nose radius of a ceramic cutting tool were examined. Effective approach angle, which is a function of cutting conditions, and boundary area were suggested, and then the influence of those was investigated, The following conclusions were obtained: (1)as cutting speed was increasing. DOC notch wear was decreasing (2) the cutting condition that magnitude of slendermess ratio was made small, was favorable for DOC notch wear, (3) as depth of cut was smaller, the influence of feed on DOC notch wear was also smaller, (4) DOC notch wear was mainly influenced by effective approach angle, but by boundary area in the range of low feed.

  • PDF