• Title/Summary/Keyword: Ceramic deposition

Search Result 735, Processing Time 0.03 seconds

Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films (에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구)

  • Kim, Ik-Soo;Koo, Sang-Mo;Park, Chulhwan;Shin, Weon Ho;Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

Effect of La Promoter in the Production of Synthesis Gas over Supported Ni Catalysts (니켈담지촉매에서 합성가스 제조시 La 조촉매의 영향)

  • Hwang, Jae-Young;Kim, Young-Kook;Lim, Yun-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.89-96
    • /
    • 2004
  • The effect of La promoter on the carbon deposition and catalytic activity in the synthesis gas production with supported Ni catalysts was investigated. Active component was Ni and support was $CeO_2$ and the promoter used was La. The reaction was carried out in a fixed bed reactor at 1 atm and $650{\sim}800^{\circ}C$. The catalysts were prepared by two methods, the impregnation method and urea method. The catalysts prepared by the urea method showed 10 times higher surface area than those of prepared by the impregnation method. By the introduction of La promoter in the catalyst system, carbon deposition was remarkably reduced from 16% to 2%. It appears that the promoter facilitates the formation of a stable fluoride-type phase, which reduces the carbon deposition. The best catalytic activity and CO and $H_2$ selectivities were obtained with 2.5wt% $Ni/Ce(La)O_x$ catalyst at $750^{\circ}C$, giving 90% methane conversion, 93 and.80% of CO and $H_2$ selectivities, respectively.

Properties of TiO2 Thin Films Deposited on PET Substrate for High Energy Density Capacitor (고에너지밀도 캐패시터를 위해 PET 기판에 증착한 TiO2 박막의 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.409-415
    • /
    • 2012
  • $TiO_2$ thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature. Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. The effects of deposition pressure on the crystallization and electrical properties of $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphous structure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing deposition pressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of $TiO_2$ films was significantly changed with deposition pressure. $TiO_2$ films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant and dissipation factor of films deposited at 70 mTorr were found to be 100~120 and 0.83 at 1 kHz, respectively. The temperature dependence of the capacitance of $TiO_2$ films showed the properties of class I ceramic capacitors. $TiO_2$ films deposited at 10~30 mTorr showed dielectric breakdown at applied voltage of 7 V. However, the films of 500~300 nm thickness deposited at 50 and 70 mTorr showed a leakage current of ${\sim}10^{-8}{\sim}10^{-9}$ A at 100 V.

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology (3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정)

  • Shin, Dong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.892-898
    • /
    • 2008
  • 3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.

Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD (탄화규소 화학기상증착 공정에서 CFD를 이용한 균일도 향상 연구)

  • Seo, Jin-Won;Kim, Jun-Woo;Hahn, Yoon-Soo;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.242-245
    • /
    • 2014
  • In order to increase the thickness uniformity in chemical vapor depositon of silicon carbide, we have carried out CFD studies for a CVD apparatus having a horizontally-rotated 3-stage susceptor. We deposited silicon carbide films of 3C-SiC phase showing quite uniform thickness between stages but not uniform one in the stage. The cause of this nonuniformity is thought to be originated from the high rotational speed. And the uniformity between stages can be further increased with the $120^{\circ}$ split type nozzles from CFD results. Through the formation of silicon carbide film on graphite substrates we can make oxidation-resistant and dust-free graphite components with high hardness for the semiconductor applications.

C-V Characteristics of Oxidized Porous Silicon (다공성 실리콘 산화막의 C-V 특성)

  • Kim, Seok;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.572-582
    • /
    • 1996
  • The porous silicon was prepared in the condition of 70mA/cm2 and 5.10 sec and then oxidized at 800~110$0^{\circ}C$ MOS(Metal Oxide Semiconductor) structure was prepared by Al electrode deposition and analyzed by C-V (Capacitance-Voltage) characteristics. Dielectric constant of oxidized porous silicon was large in the case of low temperature (800, 90$0^{\circ}C$) and short time(20-30min) oxidation and was nearly the same as thermal SiO2 3.9 in the case of high temperature (110$0^{\circ}C$) and long time (above 60 min) It is though to be caused byunoxidized silicon in oxidized porous silicon film and capacitance increase due to surface area increment effect.

  • PDF

The development of ultra high-speed metal film deposition system and process technology for a heat sink in digital devices (디지털 소자용 방열판 제작을 위한 초고속 금속필름 증착장치 및 공정기술 개발)

  • Yoon, Hyo Eun;Ahn, Seong Joon;Han, Dong Hwan;Ahn, Seungjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.17-25
    • /
    • 2017
  • To resolve the problem of the temperature rise in LED or OLED lighting, until now a thick metal film has been used as a heat-sink. Conventionally, this thick metal film is made by the electroplating method and used as the heat-dissipating plate of the electronic devices. However, nowadays there is increasing need for a Cu metal film with a thickness of several hundred micrometers that can be formed by the dry deposition method. In this work, we designed and fabricated a Cu film deposition system where the heating element is separated from the ceramic crucible, which makes ultra-rapid deposition possible by preventing heat loss. In addition, the resulting induction heating also contributes to the high deposition rate. By tuning the various parameters, we obtained a $100-{\mu}m$ thick Cu film whose heat conductivity is high and whose thickness uniformity is better than 2%, while the deposition rate is as high as $1000{\AA}/s$.

Boron Nitride Films Grown by Low Energy Ion Beam Assisted Deposition

  • Park, Young-Joon;Baik, Young-Joon;Lee, Jeong-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 2000
  • Boron nitride films were synthesized with $N_2$ion flux of low energy, up to 100 eV, at different substrate temperatures of no heating, 200, 400, 500, and $800^{\circ}C$, respectively. Boron was supplied by e-beam evaporation at the rate of $1.5\AA$/sec. For all the conditions, hexagonal BN (h-BN) phase was mainly synthesized and high resolution transmission electron microscopy (HRTEM) showed that (002) planes of h-BN phase were aligned vertical to the Si substrate. The maximum alignment occurred around $400^{\circ}C$. In addition to major h-BN phase, transmission electron diffraction (TED) rings identified the formation of cubic BN (c-BN) phase. But HRTEM showed no distinct and continuous c-BN layer. These results suggest that c-BN phase may form in a scattered form even when h-BN phase is mainly synthesized under small momentum transfer by bombarding ions, which are not reconciled with the macro compressive stress model for the c-BN formation.

  • PDF

Properties wRh Ca Substitutional Contents of $SrTiO_{3}$ Ceramic Thin Film ($SrTiO_{3}$ 세라믹 박막의 Ca 치환량에 따른 특성)

  • Kim Jin-Sa;Oh Yong-Cheol;Cho Choon-Nam;Shin Cheol-Gi;Song Min-Jong;Choi Woon-Shik;Park Min-Sun;Kim Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.397-402
    • /
    • 2005
  • The ($Sr_{1-x}Ca_x)TiO_3(SCT)$ thin films are deposited on Pt-coated electrode (Pt/TiN/SiO$_{2}$Si) using RF sputtering method with substitutional contents of Ca. The optimum conditions of RF power and Ar/O$_{2}$ ratio were 140(W) and 80/20, respectively. Deposition rate of SCT thin film was about $18.75{\AA}$/min. The dielectric constant was increased with increasing the substitutional contents of Ca, while it was decreased if the substitutional contents of Ca exceeded over $15[mol\%]$. The capacitance characteristics had a stable value within $\pm4[\%]$ in temperature ranges of $-80\~+90[^{\circ}C]$. All SCT thin films used in this study show the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency is observed above 200[kHz].

Electrical Conductivity of a $TiO_2$ Thin Film Deposited on $Al_2O_3$ Substrates by CVD

  • Hwang, Cheol-Seong;Kim, Hyeong-Joon
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 1995
  • Electrical conductivity of $TiO_2$ thin films, deposited on $Al_2O_3$ substrates by metal organic chemical vapor deposition (MOCVD), was measured by four-point probe method in a temperature range from $800^{\circ}C$ to $1025^{\circ}C$ and an oxygen partial pressure range from $2.7{\times}10^{-5}$ atm to 1 atm. In the low oxygen partial pressure region n-type conduction was dominant, but in the high oxygen partial pressure region p-type conduction behavior appeared due to substitution of Ti ions by Al ions, which were diffused from the substrate during post deposition annealing process. Electrical conductivity of the film decreases in the n-type region and increases in the p-type region as the oxygen partial pressure increases. The transition points, which show the minimum conductivity, shifted to the higher oxygen partial pressure region as the measuring temperature increased, but it shifted to lower oxygen partial pressure region with an increase in the post annealing temperature. The results were also discussed with the possible defect models.

  • PDF