DOI QR코드

DOI QR Code

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology

3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정

  • 신동윤 (한국기계연구원 나노기계연구본부)
  • Published : 2008.08.31

Abstract

3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.

3차원 쾌속 조형법은 컴퓨터에 저장되어있는 객체 데이터를 이용하여 시제품을 제작하는 기술로써, 기존의 나무나 클레이, 혹은 주조 제작방식과는 달리 원하는 위치에 요구되는 재료를 직접 적층함으로써 원형제품을 제작함을 특징으로 한다. 스테레오리쏘그래피, 용융 점착법, 선택적 레이저 소결법, 판상 제작법 등의 다양한 3차원 쾌속 조형법이 개발되었으나, 그 중에서 잉크젯을 통한 3차원 쾌속 조형법은 잉크화된 조형재료를 통해 구조적으로 기능이 가능한 원형제품의 제작이 가능하다는 특징이 있다. 그러나, 기능성 원형제품의 제작을 위해서는 잉크의 고농도화가 요구되며, 이로 인해 잉크 점도가 상승되어 젯팅 신뢰성이 저하되는 문제점이 있었다. 본 논문에서는 3차원 쾌속 조형법을 위한 최적 젯팅조건을 도출하기 위해 슬러리 타입 세라믹 상변화 잉크의 음파 전달속도 측정과 음파 전달속도가 젯팅에 미치는 영향을 고찰하도록 한다.

Keywords

References

  1. J.Y.H. Fuh, Y.S. Choo, A.Y.C. Nee, L. Lu, and K.C. Lee, "Improvement of the UV curing process for the laser lithography technique," Mater. Design, Vol. 16, No. 1, pp. 23-32, 1995. https://doi.org/10.1016/0261-3069(95)00007-L
  2. S. Maruo, and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,”Sensor. Actuat. A-Phys., Vol. 100, pp. 70-76, 2002. https://doi.org/10.1016/S0924-4247(02)00043-2
  3. G.M. Lous, I.A. Cornejo, T.F. McNulty, A. Safari, and S.C. Danforth, “Fabrication of Piezoelectric Cerramic/Polymer Composite Transducers Using Fused Deposition of Ceramics,”J. Am. Ceram. Soc., Vol. 83, No. 1, pp. 124-128, 2000. https://doi.org/10.1111/j.1151-2916.2000.tb01159.x
  4. A.K. Ibraheem, B. Derby, and P.J. Withers, “Thermal and residual Stress Modelling of the Selective Laser Sintering Process,” Mat. Res. Soc. Symp. Proc., Vol. 758, pp. 47-52, 2003.
  5. 유홍진, 김동학, 장석원, 김태완, "SLS형 쾌속조형기를 이용한 미세구조 몰드 제작," 한국산학기술학회논문지, Vol. 5, No. 2, pp. 186-190, 2004.
  6. 주영철, 김태완, "쾌속조형기를 이용한 정밀주조물의 쾌속제작에 관한 연구," 한국산학기술학회논문지, Vol. 3, No. 2, pp. 136-140, 2002.
  7. D.T. Pham, and R.S. Gault, “A comparison of rapid prototyping technologies,” Int. J. Mach. Tool. Manu., Vol. 38, No. 10, pp. 1257-1287, 1998. https://doi.org/10.1016/S0890-6955(97)00137-5
  8. 엄태준, 주영철, 민상현, "쾌속제작을 위한 적층 및 이송장치 개발," 한국산학기술학회논문지, Vol. 3, No. 2, pp. 126-130, 2002.
  9. K. Yamaguchi, K. Sakai, T. Yamanaka, and T. Hirayama, “Generation of three-dimensional micro structure using metal jet,” Precis. Eng., Vol. 24, pp. 2-8, 2000. https://doi.org/10.1016/S0141-6359(99)00015-X
  10. W. Voit, K.V. Rao, and W. Zapka, “Direct-Write Process for UV-Curable Epoxy Materials by Inkjet Technology,” Mat. Res. Soc. Symp. Proc., Vol. 758, pp. 93-99, 2003.
  11. H.J. Lee, and E. Sachs, “A visual simulation technique for 3D printing,” Adv. Eng. Softw., Vol. 31, pp. 97-106, 2000. https://doi.org/10.1016/S0965-9978(99)00045-9
  12. C. Ainsley, N. Reis, and B. Derby, “Freeform fabrication by controlled droplet deposition of powder filled melts,”J. Mater. Sci., Vol. 37, pp. 3155-3161, 2002. https://doi.org/10.1023/A:1016106311185
  13. B. Derby, and N. Reis, “Inkjet Printing of Highly Loaded Particulate Suspensions,” MRS Bull., Vol. 28, No. 11, pp. 815-818, 2003. https://doi.org/10.1557/mrs2003.230
  14. D.B. Bogy, and F.E. Talke, "Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices,"IBM J. Res. Develop., Vol. 28, No. 3, pp. 314-321, 1984. https://doi.org/10.1147/rd.283.0314
  15. N. Bugdayci, D.B. Bogy, and F.E. Talke, "Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders Used in Ink Jet Printing,"IBM J. Res. Develop., Vol. 27, No. 2, pp. 171-180, 1983. https://doi.org/10.1147/rd.272.0171
  16. D.Y. Shin, P. Grassia, and B. Derby, "Oscillatory limited compressible fluid flow induced by the radial motion of a thick-walled piezoelectric tube," J. Acoust. Soc. Am., Vol. 114, No. 3, pp. 1314-1321, 2003. https://doi.org/10.1121/1.1603769
  17. A.D. Pierce, "Acoustics: An Introduction to Its Physical Principles and Applications," the Acoustical Society of America, 1989.
  18. T.D. Rossing, and N.H. Fletcher, "The Physics of Musical Instruments," Springer, 1998.
  19. Properties of Piezoelectric Ceramics. Technical Publication TP-226. Morgan Matroc Inc., http://www.morganelectroceramics.com/pdfs/tp226.pdf
  20. B.V. Antohe, and D.B. Wallace, "The Determination of the Speed of Sound in Liquids Using Acoustic Resonance in Piezoelectric Tubes," Meas. Sci. Technol., Vol. 10, No. 11, pp. 994-998, 1999. https://doi.org/10.1088/0957-0233/10/11/303
  21. Pugh SJ, Lambert RF. Fluid Transients in Pipes and Tunnel: Speed of Propagation of Pressure Waves. Engineering Sciences Data Unit (ESDU) Data item 83046, 2001.
  22. N. Reis, "Solid Freeform Fabrication of ceramics by controlled droplet deposition of particulate suspensions," PhD thesis, University of Oxford, UK, 2002.
  23. N. Reis, C. Ainsley, and B. Derby, "Viscosity and Acoustic Behavior of Ceramic Suspensions Optimized for Phase-Change Ink-Jet Printing," J. Am. Ceram. Soc., Vol. 88, No. 4, pp. 802-808, 2005. https://doi.org/10.1111/j.1551-2916.2005.00138.x