• 제목/요약/키워드: Ceramic composites

검색결과 924건 처리시간 0.033초

Alumina/graphite 복합체의 마찰마모 특성 (Tribological Properties of Alumina/Graphite Composites)

  • 백용혁;정종인;박용갑;김주영
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.380-386
    • /
    • 1997
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as seal rings, pump parts, thread guides, and so on. In this study, the effects of graphite addition on the mechanical and tribological properties of alumina/graphite composites were investigated. The composites were prepared by the adding of graphite powder to the mixture of Al2O3, talc and calcium carbonate. Bending strength, water absorption, friction coefficient, the amount of worn out material at a certain time, and maximum surface roughness(Rmax) of the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. The melt of Al2O3-CaO-MgO-SiO2 system was shown over 10 vol% graphite composition. As the amount of the graphite is increased, needle like crystals of mullite were formed and grown. We obtained the good properties of friction coefficients and wear resistance at the powder composition containing 15 vol% of graphite.

  • PDF

코디어라이트-SiC 위스커 복합재료의 기계적 성질과 강화기구 (Mechanical Properties and Strengthening Mechanisms of Cordierite-SiC Whisker Ceramic Composites)

  • 강대갑
    • 한국세라믹학회지
    • /
    • 제23권6호
    • /
    • pp.59-65
    • /
    • 1986
  • Flexural strength fracture toughness and strengthening mechanisms of cordierite ceramics reinforced by SiC whiskers up to 40vol% were investigated. The specimens were hot pressed at Ar atmosphere. The porosity increased with the SiC whisker content. Flexural strength and single edge notch beam fracture toughness were measured up to 1,000$^{\circ}C$. Extrapolating to zero porosity the reinforced composites exhibited in-creasings in flexural strength and fracture toughness with the SiC whisker content. The composites were strengthened mainly by load transfer crack impediment and partially by crack deflection mechanisms. Impurities played an important role in determining the mechanical properties of the composites.

  • PDF

Preparation of Titanium Carbide Fiber-Reinforced Alumina Ceramic Matrix Composites by Self-Propagating High-Temperature Synthesis

  • Yun, Jondo;Bang, Hwancheol
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.171-175
    • /
    • 1998
  • $Al_2O_3$-TiC composites were prepared from aluminum, titanium oxide, and carbon fibers by self-propagating high-temperature synthesis(SHS). After the SHS reaction, the TiC phase in the sample was found either fibrous or non-fibrous shape. The fraction of the fibrous TiC phase varied with the amount of $Al_2O_3$ diluent addition. The optimum amount of diluent to make fibrous carbide was determined to be 30%. The fibers were hollow inside and made of multiple grains with a composition of titanium carbide. The hollow fiber formation mechanism was suggested and discussed. The synthesized powders were consolidated to dense composites by hot pressing at $1750^{\circ}C$ under 30 MPa.

  • PDF

방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발 (Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering)

  • 신용덕;최원석;고태헌;이정훈;주진영
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

용탕단조법으로 제조된 AC4C 합금기 세라믹강화 복합재료의 특성연구 (Characterization of the Ceramic Reinforced AC4C Matrix Composites Processed by Squeeze Casting)

  • 김억수
    • 한국주조공학회지
    • /
    • 제25권2호
    • /
    • pp.88-94
    • /
    • 2005
  • The microstructure and mechanical property of the ceramic reinforced AC4C matrix composites processed by squeeze casting were investigated. In this study Kaowool and Saffil fiber which are ceramic reinforcements are used as preform materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Kaowool and Saffil/AC4C composites, 7.5 MPa squeezing pressure and minimum 7.0% binder amount are needed to produce sound composite materials. The tensile strength of Kaowool/ AC4C composite is lower than the matrix metal and this can be explained by the melt unfilling due to formed cluster of Kaowool reinforcements. But the mechanical properties of hardness, wear resistance and thermal expansion are better than the matrix materials due to the strengthening effect of ceramic reinforcements.

상압소결 Si3N4-TiN 복합재료의 기계적성질 (Mechanical Properties of the Pressureless Sintered Si3N4-TiN Ceramic Composities)

  • 송진수;손용배;김종희
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.409-415
    • /
    • 1989
  • Si3N4-TiN electro-conductive ceramic composites with 7wt% Al2O3+3wt% Y2O3 or 5wt% MgO as sintering aids were fabricated by pressureless sintering at 1,80$0^{\circ}C$ for 1h. The 3pt. flexural strength, KIC and Vickers hardness were measrued in order to investigate the effects of TiN on the mechanical properties. Also oxidation behavior was observed by measuring the weight gain after exposure to air at 1,10$0^{\circ}C$ for 100h. the reaction products between Si3N4 and TiN was not detected by XRD and EDS. Mechanical properties of the composites were not influenced by the addition of TiN less than 30vol%, but oxidation resistance of the composites was rapidly decreased with the amount of added TiN.

  • PDF

Characterization and Evaluation of Porous Vermiculite Containing Polyethylene Composites Film

  • Lee, Hye Sun;Chang, Jeong Ho
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.85-89
    • /
    • 2018
  • This work reported the preparation and evaluation of a freshness-keeping film prepared by composite of a porous ceramic material such as vermiculite and polyethylene polymer. The ceramic material was pretreated physically and chemically to control the specific surface areas and particle size. A high content master-batch was prepared using the pretreated vermiculite. The master-batch, which contained 30% ceramic material, was mixed with a polymer material to prepare a film containing 3% vermiculite. The oxygen permeability and various physicochemical properties were evaluated for the prepared films. Compared to plain polyethylene film, the vermiculite loaded polyethylene film has a freshness maintenance property, indicating the creation of an improved film.

YAG와 기공에 의한 $SiC-TiB_2$ 전도성세라믹 복합체의 특성 평가 (Estimation of the Properties for the $SiC-TiB_2$ Electroconductive Ceramic Composites by YAG and Porosity)

  • 신용덕;이동윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권11호
    • /
    • pp.544-549
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC-39vo1.%TiB$_2$electroconductive ceramic composites were investigated as functions of the liquid additives of $Al_2O_3+Y_2O_3$ and the sintering temperature. The result of phase analysis for the SiC-39vo1.%TiB$_2$ composites by XRD revealed $\alpha -SiC(6H),\; TiB_2,\; and YAG(Al_5Y_3O_{12})$ crystal phase. The relative density of SiC-39vo1.% $TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$ contents. The fracture toughness showed the highest value of $7.8 MPa.m_{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$additives at $1750^{\circk}C$. The electrical resistivity of the SiC-39vo1.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25S^{\circ}C \;to\; 700^{\circ}C$.

  • PDF

SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향 (Effect of Annealing on Properties of SiC-$TiB_2$ Composites)

  • 신용덕;주진영;고태헌;김영백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF

Waste to shield: Tailoring cordierite/mullite/zircon composites for radiation protection through controlled sintering and Y2O3 addition

  • Celal Avcioglu;Recep Artir
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2767-2774
    • /
    • 2024
  • In this study, investment casting shell waste successfully utilized to produce cordierite/mullite/zircon composites. Green pellets, consisting of investment casting shell waste, alumina, and magnesia, were prepared and sintered at temperatures between 1250 and 1350 ℃. The influence of the sintering temperature on the crystalline phase composition, densification behavior, flexural strength, microstructure, and radiation shielding properties of the cordierite/mullite/zircon composites is investigated. Phase analysis showed that characteristic cordierite peaks appear at 1250 ℃, but the complete conversation of silica from investment casting shell waste into cordierite requires a sintering temperature of at least 1300 ℃. Notably, the cordierite/mullite/zircon composite sintered at 1350 ℃ exhibited a sixfold increase in flexural strength compared to the ceramic composite directly fabricated from investment casting shell waste at the same sintering temperature. Furthermore, the effect of Y2O3 addition on composites' radiation shielding properties is investigated. The results show that the Y2O3 addition improves densification behavior, enhancing the shielding capabilities of the composites against fast neutron and gamma radiation. Our findings suggest that the developed ceramic composites show significant potential for gamma-ray and neutron shielding applications.