• 제목/요약/키워드: Censored survival data

검색결과 97건 처리시간 0.019초

Bayesian Estimations on the Exponentiated Distribution Family with Type-II Right Censoring

  • Kim, Yong-Ku;Kang, Suk-Bok;Seo, Jung-In
    • Communications for Statistical Applications and Methods
    • /
    • 제18권5호
    • /
    • pp.603-613
    • /
    • 2011
  • Exponentiated distribution has been used in reliability and survival analysis especially when the data is censored. In this paper, we derive Bayesian estimation of the shape parameter, reliability function and failure rate function in the exponentiated distribution family based on Type-II right censored data. We here consider conjugate prior and noninformative prior and corresponding posterior distributions are obtained. As an illustration, the mean square errors of the estimates are computed. Comparisons are made between these estimators using Monte Carlo simulation study.

Small Sample Study of Kernel Hazard Ratio Estimator

  • Choi, Myong-Hui
    • Journal of the Korean Data and Information Science Society
    • /
    • 제5권2호
    • /
    • pp.59-74
    • /
    • 1994
  • The hazard ratio may be useful as a descriptive measure to compare the hazard experience of a treatment group with that of a control group. In this paper, we propose a kernel estimator of hazard ratio with censored survival data. The uniform consistency and asymptotic normality of the proposed estimator are proved by using counting process approach. In order to assess the performance of the proposed estimator, we compare the kernel estimator with Cox estimator and the generalized rank estimators of hazard ratio in terms of MSE by Monte Carlo simulation.

  • PDF

A Test Procedure for Checking the Proportionality Between Hazard Functions

  • Lee, Seong-Won;Kim, Ju-Seong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.561-570
    • /
    • 2003
  • We propose a nonparametric test procedure for checking the proportionality assumption between hazard functions using a functional equation. Because of the involvement of censoring distribution function, we consider the large sample case only and obtain the asymptotic normality of the proposeed test statistic. Then we discuss the rationale of the use of the functional equation, give some examples and compare the performances with Andersen's procedure by computing powers through simulations.

  • PDF

위험비(危險比)의 커널추정량(推定量) (A Kernel Estimator of Hazard Ratio)

  • 최명희;이인석;송재기
    • Journal of the Korean Data and Information Science Society
    • /
    • 제3권1호
    • /
    • pp.79-90
    • /
    • 1992
  • We consider hazard ratio as a descriptive measure to compare the hazard experience of a treatment group with that of a control group with censored survival data. In this paper, we propose a kernel estimator of hazard ratio. The uniform consistency and asymptotic normality of a kernel estimator are proved by using counting process approach via martingale theory and stochastic integrals.

  • PDF

Bayesian Survival Estimation of Pareto Distribution of the Second Kind Based on Type II Censored Data

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.729-742
    • /
    • 2005
  • In this paper, we discuss the propriety of the various noninformative priors for the Pareto distribution. The reference prior, Jeffreys prior and ad hoc noninformative prior which is used in several literatures will be introduced and showed that which prior gives the proper posterior distribution. The reference prior and Jeffreys prior give a proper posterior distribution, but ad hoc noninformative prior which is proportional to reciprocal of the parameters does not give a proper posterior. To compute survival function, we use the well-known approximation method proposed by Lindley (1980) and Tireney and Kadane (1986). And two methods are compared by simulation. A real data example is given to illustrate our methodology.

Life table method을 이용한 자동차 생산기간의 생존분석 (Life table method of survival analysis using the automobile production period)

  • 김성제;조재립
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 춘계학술대회
    • /
    • pp.531-539
    • /
    • 2009
  • The environment of automobile industry in the world is rapidly changing. It is changing of high oil price, technology, environment and construction of competition by newly rising an economic district. Automobile company is focusing on three issue because they want to reinforce competition of automobile industry in the world. That is innovation of production profit management through quality management and Lean. Chance of success is separated in R&D, providing distribution, manufacture, distribution, selling in automobile industry. Emphasis on development process, distribution process, manufacture process, circulation and selling process for strengthening the competitiveness and guarantee. In this thesis, we try to analysis the data set period of automobile production by using survival analysis. While using mean comparison of general statistics commit mistakes, survival analysis can used for including censored data in order to heighten analysis efficiency.

  • PDF

극단적인 오른쪽 관측중단모형에서 생존함수의 추정 (Estimation of the Survival Function under Extreme Right Censoring Model)

  • 이재만
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.225-233
    • /
    • 2000
  • 수명시험에서 시험에 장기간 노출된 대상 부품이나 실험 대상자의 수명은 관측되는 경우보다 관측중단이 일어나기가 쉽다. 이와 같은 경우에 임의중단모형에서 생존함수 추정량으로 흔히 이용되는 Kaplan과 Meier의 추정량은 수명분포의 오른쪽 꼬리부분에서 심각한 편의가 발생된다. 이러한 문제점에 대한 대안으로 정상적으로 관측된 최장수명보다 큰 관측중단수명이 많은 극단적인 오른쪽 관측중단모형에서 새로운 비모수적 생존함수 추정량을 제안하고 그 특성을 몬테칼로 모의실험을 통하여 기존의 추정량과 비교 분석하였다.

  • PDF

Analyzing Survival Data by Proportional Reversed Hazard Model

  • Gupta, Ramesh C.;Wu, Han
    • International Journal of Reliability and Applications
    • /
    • 제2권1호
    • /
    • pp.1-26
    • /
    • 2001
  • The purpose of this paper is to introduce a proportional reversed hazard rate model, in contrast to the celebrated proportional hazard model, and study some of its structural properties. Some criteria of ageing are presented and the inheritance of the ageing notions (of the base line distribution) by the proposed model are studied. Two important data sets are analyzed: one uncensored and the other having some censored observations. In both cases, the confidence bands for the failure rate and survival function are investigated. In one case the failure rate is bathtub shaped and in the other it is upside bath tub shaped and thus the failure rates are non-monotonic even though the baseline failure rate is monotonic. In addition, the estimates of the turning points of the failure rates are provided.

  • PDF

생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계 (Mixed effects least squares support vector machine for survival data analysis)

  • 황창하;심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.739-748
    • /
    • 2012
  • 최소제곱 서포트벡터기계 (least squares support vector machine)는 분류 및 비선형 회귀분석에서 유용하게 사용되고 있는 통계적 기법이다. 본 논문에서는 각 집단별로 생존자료가 관측된 경우 적용할 수 있는 LS-SVM을 제안한다. 제안된 모형은 임의우측 중도절단자료를 비선형 회귀모형에 적용할 수 있게 Kaplan- Meier의 중도절단분포의 추정값을 이용하여 구해진 가중값을 사용하고, 집단 간의 변동을 나타내기 위하여 임의효과항을 포함한다. 벌칙상수와 커널모수의 최적값을 구하기 위하여 일반화 교차타당성함수가 사용되고 모의실험에서는 임의효과항을 포함하지 않은 LS-SVM과 성능을 비교함으로써 제안된 방법의 우수성을 보이기로 한다.

중도절단 회귀모형에서 역절단확률가중 방법 간의 비교연구 (A comparison study of inverse censoring probability weighting in censored regression)

  • 신정민;김형우;신승준
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.957-968
    • /
    • 2021
  • 역중도절단확률가중(inverse censoring probability weighting, ICPW)은 생존분석에서 흔히 사용되는 방법이다. 중도절단 회귀모형과 같은 ICPW 방법의 응용에 있어서 중도절단 확률의 정확한 추정은 핵심적인 요소라고 할 수 있다. 본 논문에서는 중도절단 확률의 추정이 ICPW 기반 중도절단 회귀모형의 성능에 어떠한 영향을 주는지 모의실험을 통하여 알아보았다. 모의실험에서는 Kaplan-Meier 추정량, Cox 비례위험(proportional hazard) 모형 추정량, 그리고 국소 Kaplan-Meier 추정량 세 가지를 비교하였다. 국소 KM 추정량에 대해서는 차원의 저주를 피하기 위해 공변량의 차원축소 방법을 추가적으로 적용하였다. 차원축소 방법으로는 흔히 사용되는 주성분분석(principal component analysis, PCA)과 절단역회귀(sliced inverse regression)방법을 고려하였다. 그 결과 Cox 비례위험 추정량이 평균 및 중위수 중도절단 회귀모형 모두에서 중도절단 확률을 추정하는 데 가장 좋은 성능을 보여주었다.