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A Kernel Estimator of Hazard Ratio
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ABSTRACT

We consider hazard ratio as a descriptive measure to compare the hazard ex-
perience of a treatment group with that of a control group with censored survival
data. In this paper, we propose a kernel estimator of hazard ratio. The uniform
consistency and asymptotic normality of a kernel estimator are proved by using

.counting process approach via martingale theory and stochastic integrals.

1. Introduction

Being compared survival across treatment groups in a clinical trial, it is useful
to have a descriptive measure of the difference in survival between groups. If the
hazard functions in two groups are roughly proportional, then the ratio of hazard
functions has the interpretation of relative risk. Otherwise the ratio of hazard
functions depends on t and puts a construction on a hazard ratio and has intuitive

appeal as a descriptive statistic.

The proportional hazard model ( here after will be omitten by PHM ) proposed
by Cox (1972) specified that the hazard rate for the survival time T of an individual

with covariate vector z has the form
a(t|z) = ag(t)exp(B'z), t>0

where J is a p-vector of unknown regression coefficients and ay(t) is an arbitrary

and unspecified baseline hazard function.
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Consider the special case in which p = 1. Let z be the indicator function that
the obsevation is from treatment group. Then the Cox PHM is reduced to

ax(t) = ePay (1)

where # = ¢? is the relative risk, the proportionality constant of the hazard functions
in two groups, and «; is the corresponding hazard function in each group. In this
case, S3(t) = (S1(t))?,where S;(t) is the survival function of the ith group. If 6 =1,

then there is no difference between the two survival functions.

Aalen (1975, 1978) demonstrated that most of the two sample rank tests were
special cases of tests based on his multiplicative intensity model for counting pro-
cesses and that the asymptotic properties of these tests could be derived by mar-
tingale central limit theory. Also, Gill (1980) used martingale method to treat the

two sample problem for censored data.

On the other hand, Kalbfleish and Prentice (1981) studied an estimator of the
average hazard ratio depending on weight functions which are power transforma-
tions of the product-limit estimators of the survival distributions in the two groups

Andersen (1983) introduced the generalized rank estimator of the hazard ratio
as a new interpretation of the linear nonparametric two sample tests for censored
data, and established asymptotic normality by using counting process and martin-
gale theory. O’Sullivan (1986) studied nonparametric estimation of the relative risk
in the Cox model as alternative to the local scoring method of Hastie and Tib-
shirani (1986). This method involves penalized partial likelihood. Dabrowska and
Doksum and Song (1989) discussed graphs, confidence procedures and tests that
could be used with censored survival data to compare the hazard experience of a
treatment group with that of a _control group. In particular, they considered the

relative change A(t) in a cumulative hazard function, which equals to 8(¢) — 1.

In this paper, we shall propose a kernel estimator of hazard ratio , where we
use the kernel function K(t) instead of a predictable random weight function in the
generalized rank estimator ( See Andersen, 1983 ). Particularly we extend their
estimator in Dabrowska et al (1989)’s paper by the kernel method.

In the next section we review various estimators of the hazard ratio and in-

troduce the proposed kernel estimator of the hazard ratio. In Section 3, we derive
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uniform consistency and asymptotic normality of the proposed kernel estimator of
hazard ratio by the Lenglart’s inequality and the martingale central limit theorem.

In Section 4, we summarize the results of this paper.

2. Formulation of the problem

Let (Q,F,P) be a probability space and let {F,t € [0,1]} be an increasing,
right-continuous family of sub-sigma algebras of F. We take F; to represent the
information collected during the period [0,#]. The counting processes Ni(t),t
[0,1], ¢ = 1,2, are stochastic processes counting the number of events of interest in
each of the two groups and adapted to {F:}, where each sample path is a right-
continuous step function with N(0) = 0 and a finite number of jumps, each of
size +1. No two components jump at the same time. In survival study N;(t)
will be the number of deaths in group : in the interval [0,1]. We also assume
that EN;(1) < oo, ¢ = 1,2. Since Nj; is increasing and hence a submartingale it
follows from the Doob - Meyer decomposition that N; = A; + M; , where A; is a
predictable increasing process and M; is a martingale. We shall assume that there

exists a nonnegative left-continuous process A; adapted to {F;}, with right-hand
limits such that 4;(t) = [ A;(s)ds. Then )by Aalen (1978),

M;(t) = Ni(t) — /0 t Ai(s) ds, i=1,2, (2.1)

are square integrable martingales with variance processes

t
<Mi> ()= / Ad(s) ds. 2.2)
0
The process A; is called the intensity process of Nj.
This paper contributes to the study of the multiplicative intensity model (Aalen
,1978), where it is assumed that A; can be written in the form

Ai(?) = a;(1)Yi(2), t€(0,1], (2.3)

where a; is an unknown function and Y; is an observable ,adapted left stochastic
process. In a survival study Y;(t) will be the number of individuals at risk at time
t— and «; is the hazard function.



82 Myong-Hui Choi, In-Suk Lee and Jae-Kee Song

Also, in order to introduce the stochastic integrals for counting processes,
we assume that M; is a martingale and H; is a predictable process. Define
a process U; = {Ui(t) : t > 0} by Ui(t) = f;H,-(s)dM;(s) or equivalently,
dU;(t) = Hi(t)dM;(t). Then U; is a stochastic integral and also a martingale.
Also, < U; > (t) = fo (s)2d < M; > (s) by the relation,

Var[dUi(t)|.7~',_] = Var[H;(t)dM;(t)|F._]
= Hi(t)*Var[dM;(t)|F:i_] (2.4)
= H;(t)’d < M; > (2).

In this section, we wish to estimate 6(t) with randomly censored data. In the
case of the proportional hazard model, the estimation of the relative risk has been

considered by many authors.

First, the Cox (1972, 1975) maximum partial likelihood estimator is given by
bcos = €, (2.5)

where J is the Cox’s estimator, the solution to a5 2.C(B,1) and the log partial likeli-
hood is

C(B,1) =Z /0 B'zi(s)dNi(s) — /0 log{z K(s)eﬂ"‘(’)}d—ﬁ(s)

where N = 1.

r—l

Andersen and Gill (1982) proved the asymptotic properties of B in framework
of counting process. Andersen (1983) presented the asymptotic variance of 6¢oz and
showed that the Cox-estimator 90,” of # always has a smaller asymptotic variance

than any estimator of the form fy(2).

Secondly, Andersen (1983) and Gill and Schumacher (1987) consider the gen-
eralized rank estimator defined by

s W(s)dﬁz(s>

w(t) = fo s)dﬂl(s

€ (0,1], (2.6)
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where W(t) is a predictable process and f;(t) is a estimator introduced by Nelson
(1972) and generalized by Aalen (1978) such that

b= [ T

=1,2.

As noted by Aalen the choice W = Y;Y; corresponds to the generalized Wilcoxon
test of Gehan (1965) and W = Y,Y, /(Y] + Y;) corresponds to the log rank test.

Dabrowska et al (1989) considered the ratio of the Nelson - Aalen estimators
of the each cumulative hazard function as an estimator of hazard ratio under the
hypothesis that the PHM holds. This estimator can be extended by applying kernel
method , which becomes a kernel-type estimator. Now we propose a kernel estimator
of hazard ratio defined by

_ o K((t = )/b)dBas)
Jo K((t = s)/b)dpr(s)

A _ ¢ dN,(S) G =
/Bz ‘_/0 Y;(S) ’ 1’2a

are the Nelson-Aalen estimators, and N;(t) are the numbers of deaths in the group
iin the interval [0,¢] and Y;(t) are the numbers of the individuals at risk at time {—

and K is a bounded function with integral 1, and b is a positive number. Since, for

Ok er(t) , (2.7)

where

each: = 1,2, B; jumps at X;; with jump size 7'—(—}—(?, when é;; =1,7 =1,2,---,n;,

the kernel estimator 8x g r(t) can be represented as follows:

™ K((t — X2;)/b)

i X <t Ya(Xa2;)

~ 62;'——'1
Xy <t Yi(Xu)

=1

Remark 1. The bandwidth b represents the amount of smoothing that tends
to 0 as n — oo, but nb — oco. If a very small bandwidth b will reduce the bias,

then the variance will become large. Also, choosing a large bandwidth will reduce
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the variance. Thus the appropriate selection of bandwidth is very important in

kernel estimation of hazard ratio ( See Silverman, 1985 ).

3. Asymptotic Results

Now we are concerned with the asymptotic properties of the kernel estimator
6xer(t) and we consider the sequences of counting processes {Ni(n)} on [0, 1] with

the corresponding sequences of martingales given by
t
M™ () = N(2) —/ AP (e)ds, i=1,2,n=1,2, -, (3.1)
0

where{AEn)} is the sequences of intensity process. In the survival model with a total
number n = Yl(")(O) + Yz(n)(O) = n; + ng of individuals, Yi(")(t),i = 1,2, will have

the same order of magnitude as n and n; = Y,-(")(O) is the ** sample size ,; = 1,2.

3.1 Consistency of the kernel estimator 9KER(t)

To show the consistency, we refer the following lemma, so called the Lenglart’s

inequality.

Lemma 3.1. (Andersen & Gill) Let M be a local square integrable martingale.
Then for all 6,7 >0

) - _
P{ sup |[M(t)| > n} < -+ P{<MM>(1)> 6} (3.2)
t€fo,1) n

Now the uniform consistency of the kernel estimator is as follows:
Theorem 3.2. Assume that the following conditions hold :
(i) «(t) is continuous on [0, 1].

(ii) There exist funtions y;,y, taking value in (0,1) such that under the hy-
= )

P .
—— 0, =

pothesis that the true hazard ratio is 8 sup
telo,1]

1,2; as n — ooc.
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Then, under the proportional hazard model, we have

sup |9A§;%R(t) —0]-50, as n— oco. (3.3)
tefo,1)

Proof. From the definition (2.7) of the kernel estimator é(K";; r(t), we have

_ s\ dN{(s)
f; K™ (L=5) g5

g (t52) ()

bn Y(")(s)

i ko (522) (dNé")(s) _ 9de")(s))

Y™ (s) Y™ ()

JLE® (t - s) dN ™ (s)

b Y")(s)

1 g\ AMEV(s) dM( )(s)
fo I{(n)(tb_,.s)( y(ﬂ)( ) y(")( ) )

)

1 —s (n)
f, K (")(_tb,. )7Lr__"
Y1 (s)

here the last equality follows from the facts that dNi(")(s) = dM,-(")(s)+a.-(s)Y,«(")(.s)
and az(s) = fa;(s) under the PHM. Then é(I:%R(t) — 8 can be represented by a

stochastic integral as follows :

b 0= [ B (s) - [ BP0
n —_ (n) t—s
B™ () = IK(") t—s\ dN{(s) 1K ( (2 )
1 (3) b o) )
0 n / Yp(s) Y™ (s)
n _ (n) t—s
B () = II,(,,) t—s le( )(s) 1K ( bn )
2 (5) 1 b (n) n) :
0 n / Y7V(s) Yy (s)

are the stochastic integrals. Since Bg") and Bg") are the predictable processes and
Ml(") and MZ(") are the martingales.

where
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By combining Lemma 3.1 with (2.2) and (2.4), we have, for all 6,7 > 0,

P ( sup 105k R(t) — 8] > TI)

tefo,1
5 Aln
sn—2+P(<e§(}3R—a>(1)>5)

- % + P(( /0 B < M > (5) + /0 BO()fd < M > (s)) > 5)

)
$+P

1 K(")2 t—s) /b, :
6 |, ((n )/bn) (0Y2(7'?)(8) + YI(Z%(S)) ai(s)ds 6)
>

(n) 2
1 oom (t—s) ANy (s
(fO 'R( ) ( bns) yl(lﬂ)(s)))
‘(1)

Then since —'————)y,(t) > 0, for each t, the right-hand side converges to 0. So

we get the desired result.

3.2 Asymptotic Normality
We discuss the asymptotic normality of estimators of hazard ratio. To do this,

we need the martingale central limit theorem.

Lemma 3.3. (Andersen & Gill) Let p > 1 be fixed , and consider a sequence
N of k,-variate counting processes with intensity processes A™ and a sequence

H®™ of p x k,-matrices of predictable processes, such that the stochastic integrals

t kn
Ui = [ 3 BRENE) AP ds); 5 =10
0 p=a

are well defined. If, as n — oo,

<U}n)yU1(n) >(t) — jl(t); j)l_—-la"'»pa tE[O,l], (34)

where C is p x p matrix of continuous functions on [0,1] forming the covariance
function of a p-variate Gaussian martingale U(®) with U(*)(0) = 0, and if for all
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e>0,as n — oo,

1 kn
/ Z[H,(;:)(t) A OIIE O]} 205 § = 1,- (3.5)

then

U™ 2 asn - 00, in D([0,1)7).

Now we prove the asymptotic normality of the kernel estimator 9523 r(1).

Theorem 3.4. Assume that the conditions of Theorem 3.2 are satisfied and
that the following conditions hold :
(iii) b, €(0,1/2) and b, — 0 as n — oo.
(iv) The kernel has support within [—1,1] and is symmetric about zero.
() W fol K(")(%ﬁ)al(s)ds—ﬂ—)al(t) f_ll K(u)du, as n — oo. Furthermore, by

Lemma 3.1, we have that

-—1— l (n) t—S dN(n)(S X u u as ”n — OO0
bn/o K ( P > Yl(")(s t)/ K (u)du, .
Then
V(6L (1) — 0)-5N(0,0% g (1)), (3.6)
where
2 6%a,(t) y1(2) + Oy (2) .
) K(u)du)2< i) [

Proof. Let Z(V(t) = \/ﬁ(ég%R(t) — @) . Then, the process Z(™)(t) is simply

(n) (n)
L (Les) [AME(s) _ pdM(s)
\/ﬁfo A ( by )( y(“)(s) 0 yl(")(s)

(n)
Vo) (=3 dN (3)
b X ( bn ) Y(")(a)

/H(")( YAME™ (5) /H(")dM(")(s)

ZM(t) =

where
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H"(s) = vaB™(s),i = 1,2,

and B{"(s), B{™(s) are defined in the proof of Theorem 3.2. Since H (™ (s) and
Hé")(s) are the predictable processes and M 1(")(3) and M2(n)(s') are the martingales,
Z(™)(t) is the stochastic integral with respect to Ml(")(t) and Mz(")(t) .

Now, we need check two conditions (3.4) and (3.5) to apply Lemma 3.3. Since

w23 T

and the condition (ii) of Theorem 3.2, we have

(ED () > ¢ = {

I{|H§n)(s)| > e} 250 uniformly on [0,1].
Therefore we see that for all € > 0,
1
/ {H{" ()Y ar()V()I(H ()] > e)ds = 0.
0
And similarly
1
/ {H ()} aa(s)Ya(s)I(1Hy ™ (s)] > €)ds - 0.
0
That is, the condition (3.5) of Lemma 3.3 is satisfied.

Next, to verify the condition (3.4) of Lemma 3.3, we consider the vanance

process of the stochastic integral such that

<zZ™ > (1)

1 2 1 2
/ (HP () d < M™ > (s) + / (HM(s)) d < M™ > (s)
0 0

02
. AN (= b))
(f_l K™ () Y bma) )
1
X K™ (u 2( - + ° )a (t — bpu)du
/_1 () Yt bou) | YO (t—byu))

P 62 1 1 L 2
- (a1 (t) f_ll K(u)du)2 (Gyz(t) + yl(t)) ai1(t) [1 K(u)“du.
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because of the conditions (iii), (iv) and (v) and (i), (ii) of Theorem 3.2. Hence, <
Z™ > (t)-250% pg(t). Therefore, by Lemma 3.3, Z(™)(t) converges in distribution
to N(0,0% ggr(t)). So, we complete the proof.

Remark 2.
(1) To simplify the mathematics, we assume that the kernel has support within
[-1,1] and can extend to [—a,a] in R.
(2) The asymptotic variance was obtained by using counting process via martin-

gale theory and stochastic integral. (For more details, see Ramlau - Hansen.)

minum .5pt By condition (ii) of Theorem 3.2 and condition (v) of Theorem 3.4,

we estimate 0% (1) consistently by

5% pr(t) = nb’
fil K2(u) (ng(t —bu) + dNy(t — bu))

Y1 (t—bu)8Ya(t—bu)

3 , telb,1-0], (3.7)
(7 ki)

X

where

6 = é%l)m(t)-
4. Conclusion

In this paper we proposed a kernel estimator of the hazard ratio by using
the counting processes. Next we proved a uniform consistency and a asymptotic
normality of Gx gr(t) by using the counting processes and the martingale theory.

Finally, we proposed the estimator of the variance function o2 gr(t).
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