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Abstract. The purpose of this paper is to introduce a proportional reversed hazard
rate model, in contrast to the celebrated proportional hazard model, and study some of
its structural properties. Some criteria of ageing are presented and the inheritance of
the ageing notions (of the base line distribution) by the proposed model are studied.
Two important data sets are analyzed: one uncensored and the other having some
censored observations. In both cases, the confidence bands for the failure rate and
survival function are investigated. In one case the failure rate is bathtub shaped and in
the other it is upside bath tub shaped and thus the failure rates are non-monotonic
even though the baseline failure rate is monotonic. In addition, the estimates of the
turning points of the failure rates are provided.
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1. INTRODUCTION

Cox (1972) proportional hazard model (PHM) for survival analysis has been applied
extensively to model failure time data. For example, in the comparison of two survival

functions F,(t) and F,(¢) in a clinical trial, the PHM assumes that F ()= [Fz (t)]g for
some constant 8. In this setting, the parameter & has the interpretation of relative risk and
has intuitive appeal as a descriptive measure in survival analysis. The model also implies
that the two hazard rates corresponding to the distribution F, and F, are proportional and
thus have the same monotonic properties.

- As an alternate, Gupta et al (1998) proposed a model F ™ (¢) = [F (t)]e , where F(¢)

is the base line distribution function, and studied the monotonicity of the failure rates in
the case of exponentiated Weibull, exponentiated exponential, exponentiated Pareto and
exponentiated Gamma family of distributions. This model is flexible enough to
accommodate both monotonic as well as non-monotonic failure rates even though the base
line failure rate is monotonic. The non-monotonic failure rate models are frequently
encountered in modeling failure data, for example, lognormal, inverse Gaussian, mixture
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inverse Gaussian, see Gupta et al. (1997), Gupta and Akman (1995, 1997). For more
applications of non-monotonic failure rates, see Mudholkar et al (1995) and the references
therein. Recently Mudholkar and Srivastava (1993), Mudholkar et al (1995) and
Mudholkar and Hutson (1996) have modeled various failure time data sets with Weibull
exponentiated distribution.

In this paper we further study this model in terms of the reversed hazard rates and
review some results related to the ageing classes of distributions in reliability. In addition,
we study the Weibull exponentiated family and analyze two important data sets from a
reliability point of view. The organization of this paper is as follows: In section 2, we
present a motivation of this model in cancer research and study some structural properties
of the model. In section 3, a set of sufficient conditions are provided for F* to inherit
the ageing notions of F. Section 4 contains some comparisons of the two distributions
F and F” when @ is treated as random. The results are analogus to those of Frailty
models in survival analysis. In section 5, we study the Weibull exponentiated family and
examine some structural properties of the model including the shape of the probability
density function (pdf) and the failure rate. Section 6 deals with the analysis of Aarset
(1987) data and we obtain the maximum likelihood estimates (MLE’s) and confidence
bands for the failure rate and survival function together with the estimate of the turning
point of the failure rate. The goodness of fit of the model is examined by likelihood ratio
statistic and Wald statistic. Similar analysis is carried out, in section 7, for a censored data
set of Efron (1988).

2. THE MODEL

Let 7 be a non negative random variable denoting the life length of a component
having distribution function F' (t) with F (0) =0and pdf f (t) Then the failure rate of T
is given by r(t)= f (t)/ F (t), where F (t)= 1-F (t) is called the survival (reliability)
function of 7.

Let 7" be a non-negative random variable such that its distribution function F* (£)

is an exponentiated function of F'(¢), i.e.

F*(t)=[F),t>0,6>0. 2.1)
The pdf and the failure rate of 7" are given by
fH(t)=0F*(1)f(1) 22)
and
r*(¢)=or(t)g(t) . 2.3)
where

2lt)= £ (f)[l—F(t)]_

1-F°(t)
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Note that in this case g(t) is independent of ¢ and hence the hazard rates r(¢) and r"(¢)

are not proportional. However, the reversed hazard rates 7(¢) and 7" (#) (defined below)
are proportional.

2.1 Reversed Hazard Rate

To fix the ideas let a =inf{t: F(t) >0} and b =sup{t: F(¢) <1}. Then the reversed
hazard rate of T is defined for ¢ > a as

_4 _fO
(t) = ” In F(¢) F ) 24)

Denoting the reversed hazard rate of F'(f) by z°(¢), it is clear that the model is

equivalent to saying that 7(¢) and 7~ (¢) are proportional. The reversed hazard rate can be
interpreted as follows: Suppose the life time of a unit has reversed hazard rate 7(¢). Then
7(¢)dt is the conditional probability that the unit failed in an infinitesimal interval of

width dt preceeding ¢, given that it failed at or before?. In forensic science and in
acturial science, the time elapsed since failure is a quantity of interest in order to predict
the exact time of failure. In this case 7(¢f)dt provides the probability of failing in

(t —dt,t) when a unit is found failed at time . For more applications of reversed hazard

rate, see Gupta and Nanda (2001), Eeckhoudt and Gollier (1995) and Kijima and Ohinishi
(1999). In general, the reversed hazard rate has been found to be useful in estimating
survival function for left censored data, see Kalbfliesch and Lawless (1989). Block et al
(1998), Sengupta and Nanda (1999) and Chandra and Roy (2001) have presented several
interesting results regarding the reversed hazard rates, see Kijima (1998) for some
applications of reversed hazard rate in the study of continuous time Markov Chains.

We now present an application of the model.
2.2 An Application and Motivation

Tsodikov et al (1997) describe a stochastic model of spontaneous carcinogenesis which
allows for a simple pattern of tumor growth kinetics. It is assumed that a tumor becomes
detectable when its size attains some threshold level. The tumor growth can be assumed to
obey the postulates of birth and death process with two absorbing states so that the first
passage time with respect to the upper barrier will correspond to the time of tumor
progression. The basic assumptions of the model are as follows:

(1) The initiation event in the process of carcinogenesis is the formation of certain cells.
The formation of these cells occur at random times and their sequence in time is modeled
as a homogeneous Poisson process.
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(2) Once a first malignant cell arises as a result of tumor promotion, its subsequent growth
is irreversible and the progression stage begins. It is this clonogenic cell that gives rise to a
detectable tumor after a lapse of time, which is thought of as a random variable with
cumulative distribution function F(¢).

(3) A tumor becomes detectable when its size attains some threshold value N. A linear
pure birth process with absorbing barrier N is used to model the dynamics of the tumor
growth.

The critical number of tumor cells is represented by N = ¢V, where V' is the volume of a

tumor and c¢ is the concentration of tumor cells per unit volume. The conditional
progression time distribution given the threshold volume v is given by

F@ lv)y=01-e*)",
where A is the birth rate.
The above is an example of our model where the role of F' is played by an exponential
distribution and the role of @ is played by cv.

3. SOME CRITERIA OF AGEING

Let T be a continuous positive random variable representing the life of a component. Let
F be the distribution function of T and F'(¢) =1— F(¢) be the reliability or the survival

function of T .Thenft(x) =P(T>x+t | T>1) is the survival function of a unit of

age t. Evidently, any study of the phenomenon of aging should be based on F',(x) and
functions related to it. Thus

(1) F is said to be PF, (or increasing likelihood ratio property) if In f(¢) is concave,
where f(.) is the density corresponding to F(.) i.e. f(x+¢)/ f(x) is decreasing inx
forall t > 0.

(2) F is said to be increasing (decreasing) failure rate if F (x)=F(x+t)/F(t) is
decreasing (increasing) in ¢ . If F is absolutely continuous with density f, then F isin
IFR(DFR) class if the failure rate 7,.(t) = f(£)/ F(t) is increasing (decreasing).

(3) F is said to have increasing (decreasing) failure rate average, IFRA(DFRA) if
! .
I re(x)dx/t is increasing (decreasing).
0
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(4) F is said to have new better (worse) than used, NBU(NWU) if F‘, (x) € (2)F (x)
for x>0,t>0.

(5) F is said to have decreasing (increasing) mean residual life function , DMRL(IMRL)

if the mean residual life u,(¢) = I F(x)dx/F(t) is decreasing (increasing), assuming
t

that the mean g (0) exists.

(6) F is said to have new better (worse) than used in expectation, NBUE(NWUE)
if (1) < (2)ur-(0) forallt > 0.

The chain of implications between these classes of distributions is

PF, = IFR = IFRA = NBU = NBUE
IFR = DMRL = NBUE.

The reverse implications are not true, for counter examples, see Bryson and Siddiqui
(1969).

3.1 Inheritance of Aging Notation by F”

In the following, we present sufficient conditions for " to inherit the ageing notion of

F.

Theorem 3.1
(1) If @ > (<)l and F € IFR(DFR), then F" € IFR(DFR).

(2)If 0 > (<)l and F € NBU(NWU),then F* € NBU(NWU).
(3)If 6 > (<)l and F € PF,,then F' € PF,.

For proof, see Gupta et al (1998) for part (a) and Crescenzo (2000) for parts (b) and (c).
Without the condition ' € IFR(DFR, NBU,NWU, PF,) the following result is true.

Theorem 3.2

2 2

d d .
(@) If 0 >1 and —Jt—z—lnF(t) < ) -dt—zlnf(t) forallt > 0,then F™ e IFR.
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2 2

d d .
) If 0 <1 and dt—zlnF(t) > (1_9)Elnf(t)forall t >0, then F* € IFR.

For proof see Gupta et al (1998).

Remark: Similar conditions can be obtained for F* to belong to DFR.

3.2 Some Ordered Relations

In this section, we shall present some order relations between F and F”.

Let X andY be nonnegative absolutely continuous random variables with distribution
functions £, (¢) and F, (¢) and density functions f, (¢) and f,(¢), respectively. Then
X is said to be smaller than Y in the

(1) likelihood ratio order (X <, Y)if f,(¢)/ f,(¢) decreasesint > 0.

(2) hazard rate order (X <, Y)if r,(t) 2 r,(¢) forall £ > 0.

(3) reversed hazard rate order (X <, Y)if 7,(¢) <t (), where 7,(¢) and 7,(¢) are
the reversed hazard rates of X and Y. :

(4) stochastic order (X <, Y) if F, (t) < F, (¢) forall £ > 0.

(5) mean residual life order (X <,,,, Y)if u, (¢) < p, (¢) forallt > 0.

The following implications are well known

X<

=lIr

Y=X<, Y=X<,Y
and
X<

—lIr
Also
X<, Y=>X<,,7%Y.

—hr

Y=X<,Y=>X<,Y.

The following theorem compares the distributions 7 and £ with respect to the above
orderings.

Theorem 3.3
(DIfFO>(N, then T <, (2,)T".

)If0 >, then T <, (2, )T".
3)If0> (<), then T <, (Zp)T"-
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(HIf0>(), then T <, (=,)07.

For proof, see Gupta et al (1998) and Crescenzo (2000).

4. COMPARISON OF F AND F* WHEN © IS RANDOM

If ® is considered as random, our model can be written as

F'(t10=0)=[F(")]

This gives the unconditional distribution function as
F'(0)= [ [F@)) g(6)d6,
]

where g(8) is the probability density function (pdf) of ©.
Denoting by 7(¢) , the basehne reversed hazard rate, the unconditional distribution
function can be written as

F'()= wj e”Vg(6)dé, 4.1

0

t
where T'(¢) = I 7(x)dx is the integrated reversed hazard rate. Thus
0

F'(t) = Mo (T()),

where M g (s) is the moment generating function of ® at the point s.

Suppose now that the reversed hazard rate of T given ® =8 is 7(¢ | 6) . In order to find
the unconditional reversed hazard rate of T, we proceed as follows:

t10)g(@do
fm:Jf!g)

F* @) F*(t)

£E10) FE10) o
F@16) F@ 50

F(t | 0)

() =

T(t |9)

g(0)do (4.2)

!
]

Now the distribution function of ® given T <t is given by
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“ P(T<t©®=0)

POLO|IT<t) 6)do .
©<6|T<t) j pr<n 2®
Thus the pdf of ® given T <t is
F@|0)
O|T<t)= o 4.3
w(@I|T <1) 0 g(0) (4.3)
Hence,
() = j o(t| 0w (0| T < £)dé
0
=E®|T<t(T(t |0)
= E®|T<t (® T(t))
=7()E(®|T <1), (4.4)
where 7(¢) is the baseline reversed hazard rate.
Thus,
T’ (1) ‘
—==E®|T <t 4.5
0 (©]T <1) (4.5)

We shall now show that E(® | T <¢) is an increasing function of z.
Now,
[ 67 (¢16)g(6)d0
E@|T <=2

F (1)
wj 6™ g(0)do

_0

E, (e or® )
_E©exp(OT())
E(exp(®T(t))

(4.6)

By taking the derivative of the above expression with respect to#, it can be shown that
d .
ZE(@ |T <t)=1(t)Var(®|T <t) > 0. 4.7
0]

7(®)
point and the crossing point is a solution of the equation

Hence, is an increasing function of ¢. Also 7" (¢) and 7(¢) can cross only at one

& MelT ()] = MolT ()] 45)
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Remark: If E(®) 21, then 7" (¢) > 7(¢),, which is equivalent to F*(¢t)/F(t) is a non
decreasing function of ¢ > 0.

5. WEIBULL EXPONENTIATED FAMILY
5.1 Shape of the Failure Rate of Exponentiated Weibull Family

In order to study various shapes of the failure rate of our exponentiated Weibull model, we
define the following four classes of failure rate for a general »(¢)

1) If Vt>0,r'(¢) >0, then F e IFR.
2)If Vi > 0,7 (£) <0, then F € DFR..
3)If3at" >0, such that r(z) <0 for all te (0,¢"), ' (¢") =0 and 7 (¢) > 0 for all

t>t". Then F is bathtub shaped failure rate i.e. F € B.
4)If 3at" >0, such that #(z)>0 for all te(0,¢"), r (¢")=0and r (¢) <0 for all

t >t". Then F is upside bathtub shaped failure rate i.e. F € U.

For the determination of the above types of failure rates, see an excellent procedure given
by Glaser (1980). Also for more general failure rates, see Gupta and Warren (2001).
Using the procedure described by Glaser, the following result is obtained, see Mudholkar
(1995).

Theorem 5.1 When the baseline distribution is Weibull,
1) F'elFR,ifa>1and af >1

2) F"eDFR,if a<1and af <1

3) F'eB,ifa>1and af <1

49 F'eU,ifa<land af >1.

The monotonicities are strict except for the negative exponential distribution
correspondingto ¢ =6 =1.

5.2 Shape of the Probability Density Function

Let z = e_(%’)‘z ,we know f*(¢)=@0F°" (t)f(t) Then we have

f"(t)=[m][‘//1 (Z)_'//z(z)]’ G.2.1)

t

where Wl(z){l;z ~(e_1)z]zn(z), v.(2)= 1‘2(_;__1)

6
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The shape of f '(t) can be studied by looking at the zeros of [ 'y(t). (5.2.1) shows that
the first square bracket is always positive. Since z is a monotonic transformation of t, the

zeros of f *’(t) correspond to the intersections between ¥/, (z) and y, (z) over the
nterval 0<z<1.
The w, (z) does not depend on a,, and y, (0)= -0, v,(1)=0;

vi(z)= [1“_2_(9_1)z]l+(1_e_l)zn(z), yi)=1-0.
0 z 6
Thus, ¥, (Z) increases with z when 8 <1, and is of the type U (unimodal) when 6 > 1.

The vy, (z) is a straight line, and v/, (0) = é(é - lj s W, (1) =0, W; (z) = %(1 — —i—j

Thus, v, (z) is increasing when « >1 and decreasing when o <1.
So we have 6 cases about parametric characterization of pdf.

1. 6=1: The F '(t) reduces to a 2-parameter Weibull distribution; and its pdf
idecreasing when a <1, and is of the type U (unimodal) when o >1.

2. a=1: The Wz(z) is a horizontal line. When 8 <1, !//1(2)<O,l//;(1)> 0, thus
78 (z) and v, (z) don’t intersect. When 6 >1, l//; (1)< 0, thus y, (z) and ¥, (z)

intersect only once. So, the f ‘(t) is decreasing when @ <1, and is of the type
U (unimodal) when 6 > 1.

3. O<la<l:y, (z) <0y, (1)> 0 and v, (z)> 0, they don’t intersect. So f'(t) is
decreasing.

4. O<la>1:y,(z)<0,p (1)>0 and v,(z) < 0,,(1)> 0, as a result, f*(¢) can
be either decreasing ( when ¥, (1) 2w, (1) < 0:(1+¢92 —0)31 ) or of the type U
(unimodal) (when v/, (1) <y, (1) & a(1+ 6% —6)>1).

5. 0>lLa<l : vy, (1) <0 , y, (Z) is of the type U (unimodal), and
v,(z)20,p,(z) <0.
£*(¢) can be either decreasing ( when (1) v, (1) & a(l +6° - 0) <1 )orof the
typeU (unimodal) (when y, (1) <y, (1) < a{1+6% —6)>1).

6. 0>La>1 : y (1)<0 , w,(z) is of the type U (unimodal), and

w,(z)<0,w,(z)>0, they intersect only once. f "(¢) is always of the type
U (unimodal).
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From these 6 points, the conclusions are:

The pdf for the exponentiated Weibull family is:
e Decreasing when a(l +0°% - Q)S land 20,0 >0.

e The type U (unimodal) when a(l +6? —9)> land >0, >0.
Note that the expression for the functions gl(z) = (1 -6 Z)ln(z) and

g,(z)= (1 - lj . (z - 1) given in Jiang and Murthy (1999) are incorrect. Hence some of
a

our conclusions are different from those of Jiang and Murthy (1999).

6. ANALYZING AN UNCENSORED DATA SET BY THE MODEL
In this section, we shall analyze Aarset (1987) data from reliability point of view and shall

provide the MLE’s and confidence bands for the failure rate and the survival function
together with an estimate of the turning point of the failure rate.

Table 1. Lifetime of 50 Devices - Aarset Data

01 0211111236711 12 18 18 18 18 18 21 32 36 40 45 46 47 50 55
60 63 63 67 67 67 67 72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

6.1 MLE of Parameters and Their Standard Errors

For exponentiated Weibull model, we have
@) =(/o)tjo) eV F()=1-e,
0= @8/~ [ et (o), F ()< p-er |

a,0,0 are positive parameters; ¢ is a true scale parameter.

Given a random sample of size N from an exponentiated Weibull distribution, its
parameters can be estimated by the ML method as follows.
Let

L= li,;[f*(ti)
I =InL = Nin(ab/o)+ (0 -1)3 In(g(t,)) - z(t Jo) +(a- 1)2 In(, /o), (6.11)

i=1

(74
where g(t;) =1~ e_(t"/o-) .
The likelihood equations are given by
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N

0=dlfoa = Nja+O-1)3 g.0)/gl) -3 t./o) nl,/o)+ Yl /o) 6.12)

i=1 i=] i=1

0=0l/30 = N/O + }N: In(g(z,)) (6.1.3)

i=]

o=az/ao=—(Na/a>+(e—1)ggf,<r,.>/g<r,-)+(a/a)gc,./a)“ (6.1.4)

where g, () =™ (¢, /o) nt, /), g, ()= ~a/o)e " (/o).
The above three nonlinear equations are to be solved to obtain MLEs d,é,d‘ of the

parameters «,6,0 .

The standard error (SE) of the estimators o?,é,é' can be obtained from the sample
information matrix, see Appendix A.

The MLE’s of the parameters are obtained as & = 4.956, 8 =0.139, 6 =91.164.
The observed information matrix is given by

2.1367  71.0000  0.0492
I, ={71.0000 2587.8578 2.4333
0.0492 24333  0.0225

The variance-covariance matrix is given by
5.7636 —-0.1628 5.0073

1,7 =|-0.1628 0.0050 —0.1880
5.0073 —-0.1880 53.8257

So, the standard errors of the estimates d,é,d‘ are 2.4007,0.0707,7.3366 respectively.

6.2 Estimate and Confidence Bands of Survival Function

For our proposed model, the survival function

R()=P(x > )= F"()=1- -eer].

We estimate R(t) by ﬁ(t) =1- [1 _ e le) r .
So, the 95% asymptotic confidence interval for R(t) is

R()+1.96\Var(R())
Now, we try to find Varﬁ(t). Since d,é,é‘ are estimates of «,8,0 respectively, and
E (0?) =a, E (é ): 0, FE (6') = 0, we can use Taylor series to approximate the variance
of ﬁ(t) See Casella and Berger. (1990, page329)
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3
Var( t))z Z( )Var(X,-)+221§iﬁjC0v<Xi,Xj), 6.2.1)
i=1 i>j
- D . 3 A n
where R,:é-;R(t)Li_éﬁ,Rz— R, ;5 R P R@),;,. X, =a, X, =0,

X,=0.

Ry = 0= 0 [T (46 Y i),

R, = (1 e o )é ln(l—e‘('/&)d )

a0/aX1 e (e )H /sy (t/6) .

From the variance-covariance matrix, we know Var(X i) and Cov(X . ¢ ; ), then we can

get Var(]é(t)) by (6.2.1). The confidence band for R(t) for Aarset data is given in Figure
1.

Figure 1. Confidence Bands of Survival Function
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Figure 2. Confidence Bands of Failure Rate Function
6.3 Estimate and Confidence Bands of Failure Rate

For our exponentiated Weibull model, the failure rate function is given by

()= AR 0 __ (a0/ 0')(1 — e llof )IH e o) (t/c)* (1 - (1 —e Uy )9)

1-F'()
= (-00/0g" (02, 0)/0-"C) |
We estimate 7(¢) by #(t) = (o?é/ 6'X1 — o) )EH e oY (t/6)*" (1 _ (1 _e W)y )H]

- (-65/1) " (e, 0)/11-2°)
So, the 95% asymptotic confidence interval for r(t) is
#(t) £1.96,Var(#(t
Now, we try to find Var(f(t)). Since &,é,d’ are the MLE’s of «,8, 0 respectively, and

E (d) =a, £ (é)= 6, E ((5') = 0o, we can use Taylor series to approximate the variance
of F(t). See Casella and Berger. (1990 page329)

3
Var(f(t))z Z[f‘i]zVar(Xi)+22&FjC0v(X,-,Xj), 6.3.1)
i=1 i>j
. 0 . 0 . 0 . A
where 7, =£r(t)‘d,é,& A =£r(t)|d'“ , =_a;r(t),a,é.& , X\ =a, X,=06,
X,=6.
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= (g% (g ()gs (N6 -1+ 8° )+ [+ () a5 |1 - £° () )eu (6 - 62 - 62(/5)° )
os)/i-£20)f

7, = (-6, ()™ (O - 2° )+ bin(e @) - £°©)f |

=6/ foe ™2 (2o -1+ £° )+ 58 e N/6)* ~1Ni-£°0)/l1-2°0)f

From the variance-covariance matrix, we know ¥ar(X;) and Cov{X;, X ,), then we can

get Var(#(t)) by (6.3.1). The confidence band for #(¢) for our data set is given in Figure
2.

6.4 Estimate of Turning Point of Failure Rate Function

To find the estimate of turning point, we need to solve f'(t) = (). Since the expression for

P (t) 1s quite complex, we proceed as follows:

Define n(t) =~ /' ()/ ().
Then it can be verified that f"(t)/f"(t) = f(t)/f'(t)+ f”(t)/f{(t) =r(t)-n'(t). Thus we

solve the equation

F(O)=40) or 72()+ 7 ()M1-F()=0. 6.4.1)
Solving (6.4.1) numerically, we get the estimate of turning point £, =16.7761. The graph
of the failure rate is given in Figure 3. It is of the type B.

0.055'f
D.DS-E
0.045‘3
U.Ddﬂi
0.035-;
0.03-?
0.025-2

0.021
0 20 40, s0 80

Figure 3. Graph of Failure Rate Function
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6.5 Goodness of Fit

6.5.1 Likelihood Ratio Test

Let T;, i =1,...N be a random sample from a distribution with pdf f (t,.,@) , wWhere

©=(8,,..6,) is a vector of unknown parameters. The likelihood function for @ is

Lsz(t"G))'

Under null hypothesis H,: © =0,

L(®,)
A= —2log(~(,—°yj (6.5.1a)
Li®

is the test statistic and is asymptotically distributed as ;(z(k), where @ is maximum

likelihood estimate of © .
Tests and estimates for subset of the ®;’s can also be obtained: Suppose that ® is

partitioned as © = (®,,0,) , where ©, is px1 and @, is (k—p)xl. We consider
H,:0, =0,,then
Le,.®

= oo H010.8:(0,)]
A= 2log( L(®1’2(:)2)L (6.5.1b)

1s asympototically distributed as ;(2 ( p).

In our case, @ = (a,H,O')'. We want to test the goodness of fit of the proposed model
under null hypothesis H, : @ =1. Using IMSL routine DNEQNF, by writing a FORTRAN

program, solve a system of two non-linear equations about & and o (because 8 =1), we
get restricted likelihood estimates & = 0.949,6 = 44.913 . We get A =24.3686>3.84

whichis 7 (1) , so we reject null hypothesis, which is Weibull distribution.

6.5.2 Wald Test

Let T,, i=1,...N be a random sample from a distribution with pdf f (t,.,®) , where

0= (9,,...(9k ) is a vector of unknown parameters and @ = (é1 ,...ék ) is the unrestricted
M.LE.of ®=1(6,,..6,) .
Suppose that the null hypothesis H, : h(@) = [hl (@),...h, (@)] =0.
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h, (®)

i=12,..k;j=12,.r and 1(©)

We define H as a r Xk matrix with entries

as the Fisher information matrix with entries I @)=E (— 0% In L/ 06,00 j) ,
i,j=12,.k

The test statistic, W = h (@1]—1 I’ (@)H] ( ) is given by Wald, see Silvey (1975).
Furthermore, W is asymptotically distributed as y (r)

In our case, ® = (a,B,O')'. We want to test the goodness of fit of the proposed model
under null hypothesis H,: 6 =1. Obviously, our r =1, A (@) =0 —-1=0. Then we

know H' = [0,1,0], h((:))= @ —1. Using the estimates obtained in section 6.1, we get

W =148.2642 >3.84=y. . (1), so we reject null hypothesis, and conclude that Weibull
distribution does not fit the data well.

7. ANALYZING A CENSORED DATA SET BY THE MODEL

The flexibility of the proposed exponentiated Weibull family is further emphasized by
using it to model a censored data set. Given a random sample of size N from an

exponentiated Weibull distribution. Let 7,7, ,.....T; be uncensored, and Ty, Ty,,,...Ty
be censored observations. We will analyze the following data given by Efron (1988).

Tabl 2. Survival Times(in days) for the Patients in Arm A of the
Head-and-Neck-Cancer Trial Note: From Efron (1988)
7,34, 42, 63, 64, 74+, 83, 84,91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154,
157, 160, 160, 165, 173, 176, 185+, 218, 225, 241, 248, 273, 277, 279+ 297, 319+, 405,
417, 420, 440, 523, 523+, 583, 594, 1101, 1116+, 1146, 1226+, 1349+, 1412+, 1417

+ indicates observations lost to follow up

7.1 MLE of Parameters and Their Standard Errors

For exponentiated Weibull model, we have

f@)=(a/oXt/o) e WN  F(t)=1-e",
()= (a@/a)[l ~ ety ]ﬁ_l e Wor t/c)", F ()= [1 — e lloF ]H :

a,0,0 are positive parameters; O is a true scale parameter.

Then the likelihood function is given by

L=T1r @107 €)= TTeorok" 6 fo)" [10-5°C).

=K +1 i=K +1
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where g(t,)=1-e /)"

Log likelihood function is given by

I=InL = KIn(ab/c)+ (6 -1)3 In(g(, ))_iflg(f,. /o)

+(a—-1)zl—<:ln(ti/0')+ ﬁ:ln(l—gg(ti ) (7.1.1)

i=k+1

Then the likelihood equations are given by

0=alfoa = Kfa+(©0-13 £,0.)/) -3 0/0) e /o) + Sl o)

y = (7.1.2)
- i;rlegg-l (ti )ga (ti )/(1 - gl9 (ti )):
0=a1/00 = K/0+ Y n(e(e)~ Ye"€)inlele)/(1-*() (1.13)
0=01f00 =~(Kafo)+ O~} e, 6)/e)+ /o) /o)
= = (7.1.4)

- Y e e, )/~ 2°.)

where g, (¢;)= S (t./0) (e, /o), g, ()= _(a/o-)e—(ti/a)a (z /G)a :

Then the MLE’s for the exponentiated Weibull can be obtained by solving the above three
ML equations for o0, .

The standard error (SE) of the estimators &,0,Gbased on the sample can be obtained
from the variance-covariance matrix, see Appendix B.

Using the method described in section 6, we get MLEs:
¢ =0.3105, § =15.1850, 6 = 0.2117.

The observed information matrix is given by

25873.1778 —1.8462 -7042.0836
I,=| -1.8462 0.2213 0.5553
—7042.0836 0.5553  3910.1092

The variance-covariance matrix is given by
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0.000076  0.00029  0.00014
I, =| 0.00029 4.52147 -0.00012
0.00014 -0.00012 0.00050

So, the standard errors of the estimates d,é,é‘ are 0.0087,2.1264,0.0224 respectively.

7.2 Estimate and Confidence Bands of Survival Function

For our model, the survival function is R(t)= P(X >1)=F"(t)=1~ (1 —e e )9 . We

estimate R (t) by Ié(t) =1- (1 —e &y )H . So, the 95% asymptotic confidence interval for

RG) is R()£1.96\Var(R(r)).

Proceeding as in section 6, we can obtain a confidence interval for R(t). The confidence

band for Ié(t) is given in Figure 4.
]
0.6
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0.2

] SooeeTes Z: 563 3538882082000 0000000000
0 200 40 B0 , 80 100 120 140

Figure 4. Confidence Bands of Survival Function

7.3 Estimate and Confidence Bands of Failure Rate

Proceeding as before, we can obtain an asymptotic confidence interval for f(t).

The confidence bands for r:(t) is given in Figure 5.
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Figure 5. Confidence Bands of Failure Rate Function
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Figure 6. Graph of Failure Rate Function
7.4 Estimate of Turning Point of Failure Rate Function

Proceeding as before, we solve f(t)= f](t) The estimate of turning point is given by
fo = 3.30156 . The estimate of the failure rate is given in Figure 6. It is of the type U.
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7.5 Goodness of Fit

In this case, the restricted maximum likelihood estimates are & = 0.930,6 =14.024 .

1) The value of the likelihood ratio test statistic A =7.7052>3.84 whichis g5y (l), so we
reject null hypothesis, which is Weibull distribution.

2) The value of the Wald statistic is given by W = 44.5019 > 3.84 = y7 . (1) , SO We
reject null hypothesis, and conclude that Weibull distribution does not fit the data well.

8. CONCLUSIONS AND RECOMMENDATIONS

The discussion in this paper shows that in practice many times the data should be modeled
by a distribution function which is the power of a baseline distribution function.

1) In the case of Aarset data (uncersored) 6 =0.139.

2) In the case of Efron data (censored) & =15.185.

We can see that the proposed model is flexible enough to accommodate monotonic as well
as non-monotonic failure rates even though the baseline failure rate is monotonic. In
practice, modeling survival data by non-monotonic failure rate is desirable. For example,
when the course of the disease is such that mortality reaches a peak after some finite
period and then slowly declines.

APPENDIX A

From equations (6.1.2), (6.1.3), (6.1.4), we get the following 9 second-order partial
derivatives,

2tfoa’ =-No +(0-1 2, Ne)nle /o~ /o) -2, ))e*()
-3 i/ o)

0%1/0ad0 = ijga (¢,)/2,)

N

8000 = (@fo)e, /o) Int,jo)+ Wo ), Jo ) )- gl/a +(0-1)

i=1

S (2 /0) 2. ,)el,) - e, (el + oz, ()e () - ack, )z, () acg™ (1)

i=1

ofot0a =3 g, (0)/e(t)

i=1
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01/06* = ~N/6*

01/0600 = gjgg (e,)/2(t)

N

&focda = - Njo+(/o)> 0. /o) +(a/o) /o) Il jo)+ (0 -1)

i=1 i=1

i (/o)) ~1)e.()e)+ WVa)e, ()e)- 2. )e, @)} 7 )

i=1

0%1/0000 =3 2., (:.)/5(t,)

i=1

d’l/dc? = Na/o? —(a/0'2 +a2/az)ﬁ(ti/a)” +(6-1)

i=]

3 (g)e, e/ Yo o) ~ Vo -ajo)-2.76))2* )

i=1

Then we can get the information matrix as
0°l 0’1 0%l
oa’ Oadl dado
0’1 0’1 0%l
0o 00° 06oc
0%l 0’1 0*l
dcda 0000 Oo’

The matrix I is called the Fisher (or expected) information matrix. Obviously, it is a
symmetric matrix. Obtaining the actual Fisher information matrix is not easy in most
practical problems including the problem at hand. In such cases we obtain the observed

information matrix (defined by /) instead,

0’1 0’1 0’1
oa’ 0adb Odadoc
0%l 0%l 0’1
08a 00 06c
0’1 0’1 0%l
0cda 0000 oo’

la.8,6=¢,6,6

The inverse matrix of I, provides the standard errors of the estimates.
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APPENDIX B

For the censored data, the second order partial derivatives are given by

o1foa’ =Ko +(0 )Y . (el )l /)i~ (/o)) 2.2 )
—Zan(r/o)(r/o -6° Zg 26)/(-2 @)

-0 (e ()" 0) lnr/rf)(l /o) )— ()82 ())/(1- 7 (1)
o1foad0 =3 e, )/et)- 2.0 )e™€)/-£"()

-6 Zg (t)in(g (e, )/ (- ° ()

o1foa0c = 3 (/o) /o) (+ainf/o)-Kfo

(-1 (ele o, (/) -1 + 2. Vr)- 2. )2 () () -0 o)
S 0 Nee (e Mo /o) 1)+ oz, ()el)- av. (). )/ -5°()
-0 26" (), ()e, )/ -2

o1fosoa =32 ()/ge)- 2™ e Ni-g*()+ (e -5
01/00* =~ k[6* - 3¢ () (e(c)/ - g<,)

Yfooc = e, ()e()

- 3670k, 6 Nomlee)+1-5° (V-0
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O*lfo0da = Ko + (1/0)2 (/o) + (a/O')?:: (/o) Int, Jo)+ (1)
3 (efolefo) 1l )e)+ /ele, (ele)- . e, ) 7€) -0
i(ge-] (ti)((a/o-)(ti/o-)aga (ti)+ &, (ti)/a —ag, (ti)/o')_ ge—z(ti) a (ti) cr(ti))/(l 'gg(ti))

i=K+1

-0 360 (e, 0)/0- 20

i=K+1

510090 =3 g, (1))

i=1

- 3 )k 0 )on(el) 1)) - £°))

i=K+1

8’l/60? = Ka/o? —(a/a" +a2/0'2)i(t,./0')“ +(©-1)

i=]

i(g(ti)ga (ti)((a/a)(ti/o')a ~1/o _a/o')_gaz(ti))/gz(ti)

i=1

-0 i(gg—l(ti)ga(ti)(a(ti/G)a/O-_1/0-—a/o-)_gg—2(ti)gc27(ti))/(l_go(ti))

i=K+1

-9’ Zg“(t )g2 )/ (1-£°,))

i=K+1
From these the observed variance-covariance matrix can be obtained.
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