• 제목/요약/키워드: Cellular senescence

검색결과 179건 처리시간 0.031초

Effect of Maternal Age on Chromosome Aberrations and Telomere Quantity in Chick Embryos (닭의 모체 연령에 따른 생산 배아의 염색체 이상 빈도 및 텔로미어 함량 분석)

  • Lee, Soo-Hee;Subramani, Vinod K.;Sohn, Sea-Hwan
    • Korean Journal of Poultry Science
    • /
    • 제36권4호
    • /
    • pp.293-300
    • /
    • 2009
  • The rate of fetus with abnormal chromosomes increase with maternal age. Nondisjunction of aging oocyte chromosome is a major reason for the increased rate of abnormalities. Telomeres are the ends of eukaryotic chromosome, which are essential for chromosome stability and are related in cell senescence. This study was carried out to analyze the chromosome aberration rate and amount of telomeric DNA in chick embryo along with maternal age. Fertilized eggs and blood were sampled from White Leghorn layers starting at 20 weeks through to 70 weeks age at 10 weeks interval. Chromosome aberration rate was analyzed by karyotyping. The amounts of telomeric DNA in embryonic cells and lymphocytes were quantified by Quantitative Fluorescence in situ Hybridization method. The chromosome aberration rate in chick embryos significantly differed with maternal age. The chromosome aberration rate increased at early laying period and beyond 70 weeks of maternal age. Therefore, chromosome aberration rate was affected by maternal age due to ovulated oocytes state. However, the amount of telomeric DNA on embryonic cells did not differ significantly with maternal age. Thus, maternal age does not affects telomere quantity in their embryos due to cellular reprograming at early embryonic stage after fertilization.

Quantitative Trait Loci Associated with Functional Stay-Green SNU-SG1 in Rice

  • Yoo, Soo-Cheul;Cho, Sung-Hwan;Zhang, Haitao;Paik, Hyo-Chung;Lee, Chung-Hee;Li, Jinjie;Yoo, Jeong-Hoon;Lee, Byun-Woo;Koh, Hee-Jong;Seo, Hak Soo;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2007
  • During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with $F_2$ and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.

UBE2Q1 in a Human Breast Carcinoma Cell Line: Overexpression and Interaction with p53

  • Shafiee, Sayed Mohammad;Rasti, Mozhgan;Seghatoleslam, Atefeh;Azimi, Tayebeh;Owji, Ali Akbar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3723-3727
    • /
    • 2015
  • The p53 tumor suppressor protein is a principal mediator of growth arrest, senescence, and apoptosis in response to a broad array of cellular damage. p53 is a substrate for the ubiquitin-proteasome system, however, the ubiquitin-conjugating enzymes (E2s) involved in p53 ubiquitination have not been well studied. UBE2Q1 is a novel E2 ubiquitin conjugating enzyme gene. Here, we investigated the effect of UBE2Q1 overexpression on the level of p53 in the MDA-MB-468 breast cancer cell line as well as the interaction between UBE2Q1 and p53. By using a lipofection method, the p53 mutated breast cancer cell line, MDA-MB-468, was transfected with the vector pCMV6-AN-GFP, containing UBE2Q1 ORF. Western blot analysis was employed to verify the overexpression of UBE2Q1 in MDA-MB-468 cells and to evaluate the expression level of p53 before and after cell transfection. Immunoprecipitation and GST pull-down protocols were used to investigate the binding of UBE2Q1 to p53. We established MDA-MB-468 cells that transiently expressed a GFP fusion proteins containing UBE2Q1 (GFP-UBE2Q1). Western blot analysis revealed that levels of p53 were markedly lower in UBE2Q1 transfected MDA-MB-468 cells as compared with control MDA-MB-468 cells. Both in vivo and in vitro data showed that UBE2Q1 co-precipitated with p53 protein. Our data for the first time showed that overexpression of UBE2Q1can lead to the repression of p53 in MDA-MB-468 cells. This repression of p53 may be due to its UBE2Q1 mediated ubiquitination and subsequent proteasome degradation, a process that may involve direct interaction of UBE2Q1with p53.

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

Anti-proliferation Effect of Coscinoderma sp. Extract on Human Colon Cancer Cells (Coscinoderma sp.의 대장암세포 증식 억제 효과)

  • Choi, Ki Heon;Jung, Joohee
    • Journal of Food Hygiene and Safety
    • /
    • 제31권4호
    • /
    • pp.294-298
    • /
    • 2016
  • Natural products are attractive as the source of new drug development. Especially, numerous unknown marine bioresources are an object of attention because the ocean occupies three fourth of the earth. Survival of marine bioresources in extreme environment may induce the production of biological active compounds. As previous study, we examined over 40 specimens of marine sponges collected from Micronesia and screened their anti-proliferative activities in various cancer cell lines. Among them, we investigated Coscinoderma sp.'s activity and mechanism in human colon carcinoma HCT116 and RKO cells. Furthermore, we also used the p53-knockout of HCT116 cells and the p53 loss of RKO cells for elucidating the role of p53. Coscinoderma sp. inhibited cellular viability independently of the p53 status. Therefore, we compared the expression level of cell death-related proteins by Coscinoderma sp. in HCT16 and in HCT116 p53KO cells. Coscinoderma sp. increased p53 level and NOXA levels and induced apoptosis under the condition of p53 existence. On the other hand, Coscinoderma sp. increased p21 and mTOR levels in HCT116 p53KO cells. These results suggest that Coscinoderma sp. induced anti-proliferation effect through different pathway depending on p53 status.

Protective Effects of Fucoidan against UVB-Induced Oxidative Stress in Human Skin Fibroblasts (자외선에 의해 유도된 인간 피부 섬유아세포의 산화 스트레스에 대한 후코이단의 보호효과)

  • Ku, Mi-Jung;Lee, Myeong-Sook;Moon, Hee-Jung;Lee, Yong-Hwan
    • Journal of Life Science
    • /
    • 제20권1호
    • /
    • pp.27-32
    • /
    • 2010
  • Ultraviolet-B (UVB) radiation induces the formation of reactive oxygen species (ROS) and depletes stores of cellular antioxidants. Fucoidan, polysaccharides containing L-fucose and sulfate ester groups, are constituents of brown algae. In this study, the protective effects of fucoidan on UVB-induced oxidative stress in cultured human skin fibroblast HS68 cells were assessed. Pretreatment with fucoidan significantly reduced malondialdehyde (MDA) content in a dose-dependent manner. With fucoidan pretreatment at a dose of $100\;{\mu}g/ml$, the level of intracellular glutathione was increased by 21.5%, compared to UVB irradiation alone. Fucoidan significantly reduced UVB-induced ROS generation by 40.1% and 68.4% at 10 and $100\;{\mu}g/ml$, respectively, compared to UVB irradiation alone. The positive staining rates of senescence-associated $\beta$-galactosidase were reduced by 23.1% and 16.4% with 10 and $100\;{\mu}g/ml$ of fucoidan, compared to UVB irradiation alone. Fucoidan may exert a photoprotective effect against UVB radiation-induced oxidative stress.

Selection of Functional Lentinula edodes Strains with High Ergothioneine Content using Mono-mono Hybridization (단핵균주간 교잡에 의한 에르고티오네인 함량이 높은 기능성 표고 균주 선발)

  • Kim, Min-Jun;Jeong, Yeun Sug;Jang, Yeongseon;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • 제49권4호
    • /
    • pp.507-514
    • /
    • 2021
  • Lentinula edodes have been cultivated extensively not only in South Korea but also in other Asian countries. In terms of taste and nutrition, it is a valuable mushroom that is comparable to other mushrooms. L. edodes contains various physiologically active compounds that promote human health. One compound, ergothioneine, exerts a powerful antioxidant function that inhibits cellular senescence. As it is not biosynthesized by plants or animals, L. edodes is very important for ergothioneine supply. The L. edodes cultivars Bambithyang (NIFoS 3404) and Sansanhyang (NIFoS 3420) of the National Institute of Forest Science (NIFoS) had higher ergothioneine content than the other cultivars, and 11 strains were obtained using mono-mono hybridization between them. The strains were inoculated into sawdust media to obtain fruiting bodies, and the ergothioneine content of each hybrid strain was confirmed using high-performance liquid chromatography (HPLC) analysis. Among the 11 strains, NIFoS 5108 had a higher ergothioneine content than the parental strains, Bambithyang (NIFoS 3404) and Sansanhyang (NIFoS 3420). This study revealed that it is possible to develop cultivars with improved specific functions using mono-mono hybridization.

Anti-skinaging effects of Gryllus bimaculatus on ERM-CZ100-exposed human diploid fibroblasts (미세먼지 유발 피부노화에 대한 쌍별귀뚜라미의 예방 효과)

  • Kyong Kim;Chae-Heon Lee;Eun-Young Park;Yoon Sin Oh
    • Journal of Nutrition and Health
    • /
    • 제56권6호
    • /
    • pp.615-628
    • /
    • 2023
  • Purpose: Increasing levels of domestic fine dust (DFD) have emerged as a serious problem that threatens public health by causing chronic respiratory diseases and skin aging. The present study was performed to investigate the inhibitory effects of Gryllus bimaculatus (the two-spotted cricket), which has recently attracted attention as an edible insect in South Korea, on DFD-induced aging and inflammation. Methods: To verify that DFD causes skin aging and investigate the anti-aging effect of an aqueous ethanolic-Gryllus bimaculatus extract (AE-GBE), human diploid fibroblasts (HDF) were treated with 100 ㎍/mL of European reference material (ERM)-CZ100 dust for 24 hrs in the presence or absence of 100 ㎍/ml AE-GBE. Aging and cellular toxicities were assessed by measuring reactive oxygen species (ROS) levels, DNA fragmentation, and β-galactosidase activity. The protein levels of cyclooxygenase (COX) 2, matrix metalloproteinase (MMP)-1, and collagen were measured by western blot, and the mRNA expressions of inflammation-related genes were assayed by quantitative reverse transcriptase polymerase chain reaction. Results: Treatment with ERM-CZ100 induced an aged phenotype in HDF cells, as evidenced by increased ROS levels, DNA fragmentation, and senescence-associated β-galactosidase activity, but cotreatment with AE-GBE significantly reduced these inductions. The mRNA expressions of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, induced by ERM-CZ100 were also reduced by AE-GBE cotreatment, which also reduced COX2 expression. Moreover, ERM-CZ100-induced MMP-1 expression and reduced collagen type I expression were recovered by AE-GBE treatment. Conclusion: These results suggest that AE-GBE is a potential treatment for domestic fine dust-induced skin inflammation and inflammaging.

Characterization of Umbilical Cord-derived Stem Cells during Expansion in Vitro (탯줄유래 줄기세포의 계대배양에 따른 특성 변화의 분석)

  • Park, Se-Ah;Kang, Hyun-Mi;Heo, Jin-Yeong;Yoon, Jin-Ah;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제36권1호
    • /
    • pp.23-34
    • /
    • 2009
  • Objectives: Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. It is known that long-term in vitro culture of human bone marrow and adipose tissue derived-MSCs lead to a reduction of life span and a change of stem-like characters. The aim of our study was to examine whether stem cell properties of human umbilical cord-derived stem cells (HUC) could be affected by in vitro expansion. Methods: HUC were isolated from human umbilical cord and cultured for 10 passages in vitro. Morphology and population doubling time (PDT) were investigated, and changes of stem cell properties were examined using RT-PCR and immunocytochemistry during serial subcultures. Results: Morphology and PDT of HUC began to change slightly from the 7th passage (p7). Expression level of nestin and vimentin mRNAs increased along with the culture period from p4 until p10. In contrast, expression level of SCF mRNA decreased during the same culture period. Expression level of Oct-4 and HNF-4${\alpha}$ mRNAs was not significantly changed throughout the culture period until p10. Expression level of BMP-4, FGF-5, NCAM and HLA-ABC mRNAs appeared to increase as the culture continued, however, the difference was not significant. Immunocytochemical studies showed that HUC at p3, p6 and p9 positively were stained with antibodies against SSEA-3 and SSEA-4 proteins. Interestingly, staining intensity of HUC for ICAM-1 and HLA-ABC gradually increased throughout the culture period. Intensity against thy-1 and fibronectin antibodies increased at p9 while that against TRA-1-60 and VCAM-1 antibodies began to decrease at p6 until p9. Conclusions: These results suggest that HUC change some of their stem cell characteristics during in vitro culture. Development of culture system might be needed for the maintenance of characteristics.