Browse > Article

Characterization of Umbilical Cord-derived Stem Cells during Expansion in Vitro  

Park, Se-Ah (Department of Biotechnology, College of Natural Science, Seoul Women's University)
Kang, Hyun-Mi (Department of Biotechnology, College of Natural Science, Seoul Women's University)
Heo, Jin-Yeong (Department of Biotechnology, College of Natural Science, Seoul Women's University)
Yoon, Jin-Ah (Department of Biotechnology, College of Natural Science, Seoul Women's University)
Kim, Hae-Kwon (Department of Biotechnology, College of Natural Science, Seoul Women's University)
Publication Information
Clinical and Experimental Reproductive Medicine / v.36, no.1, 2009 , pp. 23-34 More about this Journal
Abstract
Objectives: Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. It is known that long-term in vitro culture of human bone marrow and adipose tissue derived-MSCs lead to a reduction of life span and a change of stem-like characters. The aim of our study was to examine whether stem cell properties of human umbilical cord-derived stem cells (HUC) could be affected by in vitro expansion. Methods: HUC were isolated from human umbilical cord and cultured for 10 passages in vitro. Morphology and population doubling time (PDT) were investigated, and changes of stem cell properties were examined using RT-PCR and immunocytochemistry during serial subcultures. Results: Morphology and PDT of HUC began to change slightly from the 7th passage (p7). Expression level of nestin and vimentin mRNAs increased along with the culture period from p4 until p10. In contrast, expression level of SCF mRNA decreased during the same culture period. Expression level of Oct-4 and HNF-4${\alpha}$ mRNAs was not significantly changed throughout the culture period until p10. Expression level of BMP-4, FGF-5, NCAM and HLA-ABC mRNAs appeared to increase as the culture continued, however, the difference was not significant. Immunocytochemical studies showed that HUC at p3, p6 and p9 positively were stained with antibodies against SSEA-3 and SSEA-4 proteins. Interestingly, staining intensity of HUC for ICAM-1 and HLA-ABC gradually increased throughout the culture period. Intensity against thy-1 and fibronectin antibodies increased at p9 while that against TRA-1-60 and VCAM-1 antibodies began to decrease at p6 until p9. Conclusions: These results suggest that HUC change some of their stem cell characteristics during in vitro culture. Development of culture system might be needed for the maintenance of characteristics.
Keywords
Umbilical cord-derived stem cells; Stem cell characteristics; RT-PCR; Immunocytochemistry;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 2004; 229: 623-31   DOI
2 Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364-70   DOI   ScienceOn
3 Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007; 167: 989-97   DOI   ScienceOn
4 Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33: 919-26   DOI   ScienceOn
5 Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004; 22: 675-82   DOI   ScienceOn
6 Zuk PA, ZhuM, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-95   DOI   ScienceOn
7 Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 2006; 24: 781-92   DOI   ScienceOn
8 Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng 2007; 13: 1291-8   DOI   ScienceOn
9 Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J, et al. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 2008; 68: 4229-38   DOI   ScienceOn
10 Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, selfrenewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278-94   DOI   ScienceOn
11 Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006; 10: 7-14
12 Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004; 225: 649-58
13 Baksh D, Yao R, Tuan RS. Comparison of proliferative and multi lineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25: 1384-92   DOI   ScienceOn
14 Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 2007; 25:319-31   DOI   ScienceOn
15 Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105-10   DOI   ScienceOn
16 Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, et al. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 2007; 9: 581-94   DOI   ScienceOn
17 Carlin R, Davis D, Weiss M, Schultz B, Troyer D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006; 6: 4-8   ScienceOn
18 Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999; 107: 275-81   DOI   ScienceOn
19 Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27-35   DOI   ScienceOn
20 Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24:1294-301   DOI   ScienceOn
21 Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta 1997; 18: 53-64   DOI   PUBMED   ScienceOn
22 Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 2008; 3: e2213   DOI   PUBMED   ScienceOn
23 Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 2004; 22: 1330-7   DOI   ScienceOn
24 Seah Park, Hyeon Mi Kang, Eun Su Kim, Jinyoung Kim, Haekwon Kim. Characterization analysis for cardiogenic potential of three human adult stem cells. Dev Reprod 2007; 11: 1167-177
25 Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004; 22: 625-34   DOI   ScienceOn
26 Noer A, Boquest AC, Collas P. Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 2007; 8: 18   DOI   PUBMED
27 Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW. A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res 2006; 24: 2059-71   DOI   ScienceOn
28 Ryu E, Hong S, Kang J, Woo J, Park J, Lee J, et al. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2008; 371: 431-6   DOI   ScienceOn
29 Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 27: 71-4   DOI
30 Lu FZ, Fujino M, Kitazawa Y, Uyama T, Hara Y, Funeshima N, et al. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood. J Lab Clin Med 2005; 146: 271-8   DOI   ScienceOn
31 Fu YS, Shih YT, Cheng YC, Min MY. Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 2004; 11: 652-60   DOI   ScienceOn
32 Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauvé Y, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 2007; 25: 602-11   DOI   ScienceOn
33 Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 2006; 24:781-92   DOI   ScienceOn
34 Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 2007; 359: 108-14   DOI   ScienceOn
35 Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24: 1167-76   DOI   ScienceOn
36 Bolland BJ, Tilley S, New AM, Dunlop DG, Oreffo RO. Adult mesenchymal stem cells and impaction grafting: a new clinical paradigm shift. Expert Rev Med Devices 2007; 4: 393-404   DOI   ScienceOn
37 Seah Park, Hyeon Mi Kang, Eun Su Kim, Jinyoung Kim, Haekwon Kim. Cardiomyogenic potential of human adipose tissue and umbilical cord derived-mesenchymal like stem cells. The Korean Journal of Reproductive Medicine 2007; 34: 239-252
38 Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004; 40: 1275-84   DOI   ScienceOn
39 Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91: 1017-26   PUBMED   ScienceOn