DOI QR코드

DOI QR Code

Selection of Functional Lentinula edodes Strains with High Ergothioneine Content using Mono-mono Hybridization

단핵균주간 교잡에 의한 에르고티오네인 함량이 높은 기능성 표고 균주 선발

  • Kim, Min-Jun (Forest Microbiology Division, Forest Bioresources Department, National Institute of Forest Science) ;
  • Jeong, Yeun Sug (Forest Microbiology Division, Forest Bioresources Department, National Institute of Forest Science) ;
  • Jang, Yeongseon (Forest Microbiology Division, Forest Bioresources Department, National Institute of Forest Science) ;
  • Ka, Kang-Hyeon (Forest Microbiology Division, Forest Bioresources Department, National Institute of Forest Science)
  • 김민준 (국립산림과학원 산림생명자원연구부 산림미생물연구과) ;
  • 정연석 (국립산림과학원 산림생명자원연구부 산림미생물연구과) ;
  • 장영선 (국립산림과학원 산림생명자원연구부 산림미생물연구과) ;
  • 가강현 (국립산림과학원 산림생명자원연구부 산림미생물연구과)
  • Received : 2021.10.08
  • Accepted : 2021.12.07
  • Published : 2021.12.31

Abstract

Lentinula edodes have been cultivated extensively not only in South Korea but also in other Asian countries. In terms of taste and nutrition, it is a valuable mushroom that is comparable to other mushrooms. L. edodes contains various physiologically active compounds that promote human health. One compound, ergothioneine, exerts a powerful antioxidant function that inhibits cellular senescence. As it is not biosynthesized by plants or animals, L. edodes is very important for ergothioneine supply. The L. edodes cultivars Bambithyang (NIFoS 3404) and Sansanhyang (NIFoS 3420) of the National Institute of Forest Science (NIFoS) had higher ergothioneine content than the other cultivars, and 11 strains were obtained using mono-mono hybridization between them. The strains were inoculated into sawdust media to obtain fruiting bodies, and the ergothioneine content of each hybrid strain was confirmed using high-performance liquid chromatography (HPLC) analysis. Among the 11 strains, NIFoS 5108 had a higher ergothioneine content than the parental strains, Bambithyang (NIFoS 3404) and Sansanhyang (NIFoS 3420). This study revealed that it is possible to develop cultivars with improved specific functions using mono-mono hybridization.

본 연구에서는 단포자 교배를 통해 교잡균주를 만들고 자실체를 발생시켜 형태적 특성과 에르고티오네인 함량을 조사하였다. 자실체의 형태적 특성과 생산량을 함께 고려한다면 교잡 균주 중 NIFoS 5101 균주의 자실체가 준수하게 확인되었다. 자실체 에르고티오네인 함량 조사 결과 모균주 평균이 540 mg/kg이었고 교잡균주 자실체 평균은 459 mg/kg으로 확인되었다. 대부분의 교잡균주 자실체는 모균주보다 낮은 에르고티오네인 함량을 보였지만 NIFoS 5101 균주 자실체는 모균주인 밤빛향보다 높게 측정되었으며 NIFoS 5108 균주 자실체 두 가지 모균주 밤빛향과 산산향보다 20%가량 높은 것을 확인할 수 있었다. 자실체의 형태적 특성과 에르고티오네인 함량 분석결과를 종합하면 NIFoS 5101 균주가 교잡균주 중 가장 준수한 결과를 나타냈다.

Keywords

Acknowledgement

This work was supported by the Golden Seed Project of 'Breeding of new strains of shiitake for cultivar protection and substitution of import [213007-05-5-SBH10]' provided by the Ministry of Agriculture, Food and Rural Affairs, Ministry of Oceans and Fisheries, Rural Development Administration and Korea Forest Service.

References

  1. Muszynska B, Pazdur P, Lazur J, Sulkowska-Ziaja K. Lentinula edodes (Shiitake)-biological activity. Int J Med Rev 2017;27:189-95.
  2. Mau JL, Lin HC, Song SF. Antioxidant properties of several specialty mushrooms. Food Res Int 2002;35:519-26. https://doi.org/10.1016/S0963-9969(01)00150-8
  3. Hartman PE. Ergothioneine as antioxidant. Meth Enzymol 1990;186:310-8. https://doi.org/10.1016/0076-6879(90)86124-E
  4. Paul B, Snyder S. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ 2010;17:1134-40. https://doi.org/10.1038/cdd.2009.163
  5. Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta Mol Basis Dis 2012;1822:784-93. https://doi.org/10.1016/j.bbadis.2011.09.017
  6. Melville DB, Eich S, Ludwig ML. The biosynthesis of ergothioneine. J Bio Chem 1957;224:871-7. https://doi.org/10.1016/S0021-9258(18)64979-8
  7. Melville DB, Eich S. The occurrence of ergothioneine in plant material. J Bio Chem 1956;218:647-51. https://doi.org/10.1016/S0021-9258(18)65831-4
  8. Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem 2017;233:429-33. https://doi.org/10.1016/j.foodchem.2017.04.109
  9. Jang Y, Park J, Ryoo R, Park Y, Ka KH. Ergothioneine contents of shiitake (Lentinula edodes) fruiting bodies on sawdust media with different nitrogen sources. Kor J Mycol 2016;44:100-2. https://doi.org/10.4489/KJM.2016.44.2.100
  10. Kong WS, Yoo YB, Jhune CS, You CH, Cho YH, Park YH, Kim KH. Cultivation and characterization of commercial strain. J Mushroom 2007;5:1-6.
  11. Shin PG, Oh MJ, Kim ES, Oh YL, Jang KY, Kong WS. Cultivation of 'ergo', a functional mushroom variety with enhanced ergothioneine content. In: 2016 Summer Conference; 2016 Jun 9-10; Jeonju-si, South Korea. The Korean Society of Mushroom Science; 2016. p. 190.
  12. Liu SR, Ke BR, Zhang WR, Liu XR, Wu XP. Breeding of new Ganoderma lucidum strains simultaneously rich in polysaccharides and triterpenes by mating basidiospore-derived monokaryons of two commercial cultivars. Sci Hort 2017;216:58-65. https://doi.org/10.1016/j.scienta.2016.12.016
  13. Kim JH, Kang YJ, Baek IS, Shin BE, Choi JI, Lee YS, Lee Y, Jeoung YK, Lee YS, Chi JH. Characteristics of Newly Bred Lentinula edodes Cultivar 'Hwadam' for Sawdust Cultivation. Kor J Mycol 2020;48:125-33. https://doi.org/10.4489/KJM.20200014
  14. Park Y, Jang Y, Ryoo R, Lee B, Ka KH. Breeding and cultural characteristics of newly bred Lentinula edodes strain 'Sanjanghyang'. Kor J Mycol 2019;47:143-52.
  15. Ka KH, Ryoo R, Jang Y, Park Y, Jeong YS, Kang JJ, Heo G, Jeon SM. Characteristics of fruiting bodies formed upon monohybrid cross of Lentinula edodes strains. Kor J Mycol 2019;47:173-9. https://doi.org/10.4489/KJM.20190021
  16. Chen SY, Ho KJ, Hsieh YJ, Wang LT, Mau JL. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT 2012;47:274-8. https://doi.org/10.1016/j.lwt.2012.01.019
  17. Seebeck FP. In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J Am Chem Soc 2010;132:6632-3. https://doi.org/10.1021/ja101721e
  18. Yu YH, Pan HY, Guo LQ, Lin JF, Liao HL, Li HY. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microb Cell Factories 2020;19:1-10. https://doi.org/10.1186/s12934-019-1269-8
  19. Yang X, Lin S, Lin J, Wang Y, Lin JF, Guo LQ. The biosynthetic pathway of ergothioneine in culinary-medicinal winter mushroom, Flammulina velutipes (Agaricomycetes). Int J Med Mushrooms 2020;22:171-181. https://doi.org/10.1615/intjmedmushrooms.2020033826
  20. Yoo YB, Kim IY, Kong WS, Jang KY, Oh SJ, Jhune CS. Strain improvement of Pleurotus ostreatus using self-fertility monospore isolate. J Mushroom 2006;4:48-52.
  21. Kong WS, Yoo YB, Jhune CS, Jang WB, Choi JS, Kim KH. Characterization of a new brown commercial strain. J Mushroom 2008;6:115-20.
  22. Ha BS, Kim S, Ro HS. Isolation and characterization of monokaryotic strains of Lentinula edodes showing higher fruiting rate and better fruiting body production. Mycobiology 2015;43:24-30. https://doi.org/10.5941/MYCO.2015.43.1.24
  23. Ito T, Kato M, Tsuchida H, Harada E, Niwa T, Osawa T. Ergothioneine as an anti-oxidative/anti-inflammatory component in several edible mushrooms. Food Sci Technol Res 2011;17:103-10. https://doi.org/10.3136/fstr.17.103