• Title/Summary/Keyword: Cellular immune response

Search Result 359, Processing Time 0.022 seconds

A Technique to Enhance Insecticidal Efficacy Using Bt Cry Toxin Mixture and Eicosanoid Biosynthesis Inhibitor (혼합 비티 독소단백질과 아이코사노이드 생합성 억제자를 이용한 약효 증진 기술)

  • Eom, Seonghyeon;Park, Youngjin;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.301-311
    • /
    • 2015
  • To enhance Bacillus thuringiensis (Bt) efficacy, four Cry toxins were purified from four different Bt strains and assessed in their combined efficacy. The Cry mixtures significantly expanded their target insect spectra. Bacterial culture broth of Xenorhabdus nematophila (Xn) significantly suppressed insect cellular immune response and increased Cry toxicity. The addition of Xn culture broth to Cry mixture significantly enhanced Bt efficacy in target insect spectrum and insecticidal activity.

Proteomics Analysis of Immunoprecipitated Proteins Associated with the Oncogenic Kinase Cot

  • Wu, Binhui;Wilmouth, Rupert C.
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • Cancer Osaka thyroid, also known as Tpl-2 (Cot) is a member of the MAP3K kinase family and plays a key role in the regulation of the immune response to pro-inflammatory stimuli such as lipopolysaccharide (LPS) and tumour necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). A series of Cot constructs with an N-terminal 6xHis tag were transiently expressed in HEK293 cells: $Cot_{130-399}$ (kinase domain), $Cot_{1-388}$ (N-terminal and kinase do-mains), $Cot_{1-413}$, $Cot_{1-438}$ (containing a putative PEST sequence), $Cot_{1-457}$ (containing both PEST and degron sequences) and $Cot_{1-467}$ (full-length protein). These Cot proteins were pulled down using an anti-6xHis antibody and separated by 2D electrophoresis. The gels were silver-stained and 21 proteins were detected that did not appear, or had substantially reduced intensity, in the control sample. Three of these were identified by MS and MS/MS analysis as Hsp90, Hsp70 and Grp78. Hsp90 appeared to bind to the kinase domain of Cot and this interaction was further investigated using co-immuno-precipitation with both overexpressed Cot in HEK293 cells and endogenous Cot in Hela cells.

The Evaluation of Dinitrochlorobenzene Contact Sensitization in Patients with Bronchogenic Carcinoma (폐암환자의 Dinitrochlorobenzene (DNCB) 접촉성 감작에 대한 고찰)

  • Jo, Keon-Hyon;Lee, Hong-Kyun
    • Journal of Chest Surgery
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 1979
  • Clinical evaluation of contact sensitization to 2, 4-dinitro-chlorobenzene [DNCB] was performed in 2 groups: group A [30 patients with non-malignant disease] and group B [30 patients with bronchogenic carcinoma]. Initial sensitization was elicited out by applying 2, 000 ug of DNCB to skin surface of the both group A and B. Subsequently a relatively weak challenge dose, 200 ug of DNCB, was applied 14 days later, showing the satisfactory results of sensitization with minimizing non-specific irritative inflammatory skin response. Delayed cutaneous hypersensitivity reactions shown by spontaneous flare phenomena appeared at the challenge site, and they were assessed 48 hours later. The reaction were graded from +1 to +4 according to the degree of flare or vesicular reaction. The results were as follows: 1. 28 cases [93%] of group A, however, only 18 cases [67%] of group B exhibited delayed cutaneous hypersensitivity reaction to DNCB contact sensitization [P<0.02]. 2. Of group A, the delayed cutaneous hypersensitivity reactions above +2 of DNCB score were 25 cases [83%], meanwhile 11 cases [37%] in group B [P<0.001]. 3. Undifferentiated carcinomas showed highest incidence of anergy to DNCB contact sensitization in the all histologic types of group B. 4. In group B, 8 [42%] of 19 cases who react to DNCB were resectable, whereas only 2 [18 %] of 11 cases who failed to react to DNCB were resectable for curative cancer surgery. These study suggests that cellular immune reaction of group B was depressed remarkably comparing with that of group A.

  • PDF

Mechanism of T cell exhaustion in a chronic environment

  • Jin, Hyun-Tak;Jeong, Yun-Hee;Park, Hyo-Jin;Ha, Sang-Jun
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.217-231
    • /
    • 2011
  • T cell exhaustion develops under conditions of antigen-persistence caused by infection with various chronic pathogens, such as human immunodeficiency virus (HIV) and myco-bacterium tuberculosis (TB), or by the development of cancer. T cell exhaustion is characterized by stepwise and progressive loss of T cell function, which is probably the main reason for the failed immunological control of chronic pathogens and cancers. Recent observations have detailed some of the intrinsic and extrinsic factors that influence the severity of T cell exhaustion. Duration and magnitude of antigenic activation of T cells might be associated with up-regulation of inhibitory receptors, which is a major intrinsic factor of T cell exhaustion. Extrinsic factors might include the production of suppressive cytokines, T cell priming by either non-professional antigenpresenting cells (APCs) or tolerogenic dendritic cells (DCs), and alteration of regulatory T (Treg) cells. Further investigation of the cellular and molecular processes behind the development of T cell exhaustion can reveal therapeutic targets and strategies for the treatment of chronic infections and cancers. Here, we report the properties and the mechanisms of T cell exhaustion in a chronic environment.

Signaling for Synergistic Activation of Natural Killer Cells

  • Kwon, Hyung-Joon;Kim, Hun Sik
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.240-246
    • /
    • 2012
  • Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy- dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

PKD2 interacts with Lck and regulates NFAT activity in T cells

  • Li, Qing;Sun, Xiaoqing;Wu, Jun;Lin, Zhixin;Luo, Ying
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Protein kinase D2 (PKD2) is a member of the PKD serine/threonine protein kinase family that has been implicated in the regulation of a variety of cellular processes including proliferation, survival, protein trafficking and immune response. In the present study, we report a novel interaction between PKD2 and Lck, a member of the Src tyrosine protein kinase family that is predominantly expressed in T cells. This interaction involved the C-terminal kinase domains of both PKD2 and Lck. Moreover, co-expression of Lck enhanced the tyrosine phosphorylation of PKD2 and increased its kinase activity. Finally, we report that PKD2 enhanced T cell receptor (TCR)-induced nuclear factor of T cell (NFAT) activity in Jurkat T cells. These results suggested that Lck regulated the activity of PKD2 by tyrosine phosphorylation, which in turn may have modulated the physiological functions of PKD2 during TCR-induced T cell activation.

Anti Inflammatory Effect of Low Level Laser Irradiation on the LPS-stimulated Murine Immunocytes

  • Jin, Dan;Lee, Jong-Young;Cho, Hyun-Chul;Kim, Soo-Ki
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.124-129
    • /
    • 2005
  • Pro-inflammatory cytokines, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin-12 (IL-12) and interleukin $(IL-1)-{\beta}$, play a key role in causing inflammatory diseases, which are rheumatoid arthritis, Crohn's disease and sepsis. Accumulating evidences suggest that low level laser irradiation (LLLI) may have an anti-inflammatory action. However, there are few data regarding down regulation of Th1 immune response by using the diod typed laser emitting device for human patients. As a fundamental step in order to address this issue, we investigated immunological impact of the low level laser irradiation (10 mw laser diode with a wavelength of 630 nm) on expression of pro-inflammatory cytokines in murine immunocytes (splenocytes and peritoneal macrophages) in vitro. The LLLI on lipopolysaccharide (LPS 100 ng/ml)-stimulated murine splenocytes and macrophages, clearly down regulated mRNA expression of $TNF-{\alpha}$ and IL-12 in dose-dependent manner. In addition, LLLI significantly inhibits the NO production in the LPS-stimulated murine macrophages. This data suggests that LLLI (wavelength of 630 nm) may exert an anti-inflammatory action via modulation of pro-inflammatory cytokine and NO production pathway.

Kinetics of Binding of LPS to Recombinant CD14, TLR4, and MD-2 Proteins

  • Shin, Han Jae;Lee, Hayyoung;Park, Jong Dae;Hyun, Hak Chul;Sohn, Hyung Ok;Lee, Dong Wook;Kim, Young Sang
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.119-124
    • /
    • 2007
  • TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants ($K_D$) of LPS for immobilized CD14 and MD-2 were $8.7{\mu}m$, and $2.3{\mu}m$, respectively. The association rate constant ($K_{on}$) of LPS for MD-2 was $5.61{\times}10^3M^{-1}S^{-1}$, and the dissociation rate constant ($K_{off}$) was $1.28{\times}10^2S^{-1}$, revealing slow association and fast dissociation with an affinity constant $K_D$ of $2.33{\times}10^6M$ at $25^{\circ}C$. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.

Characterization of major histocompatibility complex antigen on Korean native cattles (한우의 주요 조직 적합성 항원 규명)

  • Yoon, Seok-joo;Kwon, Myung-sang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.307-315
    • /
    • 1995
  • The characterization of the MHC of domestic animals may constitute a first step towards increasing the efficiency of food production through improved disease resistance. In order to study the role of the MHC in regulating immune response it is first necessary to identify the different MHC alleles. In this research we try to investigate the possible associations between BoLA of Korean native cattles and infectious cattle disease. For this purpose we used one approach, serology. The results were summarized as follows : 1. Korean native cattle's lymphocyte reacted with alloantisera which recognized seven official BoLA allele. Korean native cattle's lymphocytes were reacted same as European breeds(especially with 673/3(W20)). 2. Korean native cattle's lymphocytes reacted with alloantisera 773/2, 673/3, 638/3, 773/3, 602/2, 639/2 and 639/3 at high reaction frequency. But alloantisera 642/1 was not expressed on Korean native cattle. If this allele, recognized by alloantisera(642/1), officially certificate In BoLA workshop it will be characterization factor of Korean native cattle. 3. According to cellular similarity index, we can presume on genetic relativity which has no family relationship.

  • PDF

A new function of glucocorticoid receptor: regulation of mRNA stability

  • Park, Ok Hyun;Do, Eunjin;Kim, Yoon Ki
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.367-368
    • /
    • 2015
  • It has long been thought that glucocorticoid receptor (GR) functions as a DNA-binding transcription factor in response to its ligand (a glucocorticoid) and thus regulates various cellular and physiological processes. It is also known that GR can bind not only to DNA but also to mRNA; this observation points to the possible role of GR in mRNA metabolism. Recent data revealed a molecular mechanism by which binding of GR to target mRNA elicits rapid mRNA degradation. GR binds to specific RNA sequences regardless of the presence of a ligand. In the presence of a ligand, however, the mRNA-associated GR can recruit PNRC2 and UPF1, both of which are specific factors involved in nonsense-mediated mRNA decay (NMD). PNRC2 then recruits the decapping complex, consequently promoting mRNA degradation. This mode of mRNA decay is termed "GR-mediated mRNA decay" (GMD). Further research demonstrated that GMD plays a critical role in chemotaxis of immune cells by targeting CCL2 mRNA. All these observations provide molecular insights into a previously unappreciated function of GR in posttranscriptional regulation of gene expression. [BMB Reports 2015; 48(7): 367-368]