DOI QR코드

DOI QR Code

혼합 비티 독소단백질과 아이코사노이드 생합성 억제자를 이용한 약효 증진 기술

A Technique to Enhance Insecticidal Efficacy Using Bt Cry Toxin Mixture and Eicosanoid Biosynthesis Inhibitor

  • 엄성현 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박영진 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Eom, Seonghyeon (Department of Bioresource Sciences, Andong National University) ;
  • Park, Youngjin (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 투고 : 2015.06.22
  • 심사 : 2015.08.11
  • 발행 : 2015.09.30

초록

Bacillus thuringiensis (비티)의 약효를 증가시키기 위한 일환으로 Cry 독소단백질의 혼합효과를 검정하였다. 서로 다른 네 가지 비티 균주에서 분리된 Cry 독소단백질 추출물들은 각각 좁은 적용해충범위를 나타냈다. 이들 Cry 독소단백질을 혼합한 결과 적용범위가 현격하게 증가했다. Xenorhabdus nematophila (Xn) 세균 배양액은 조사된 모든 곤충의 세포성 면역을 억제하고 Cry 독소단백질의 살충력을 증가시켰다. 이 Xn 세균배양액을 혼합 Cry 독소단백질에 추가한 결과 적용해충범위와 살충력을 모두 증가시켰다.

To enhance Bacillus thuringiensis (Bt) efficacy, four Cry toxins were purified from four different Bt strains and assessed in their combined efficacy. The Cry mixtures significantly expanded their target insect spectra. Bacterial culture broth of Xenorhabdus nematophila (Xn) significantly suppressed insect cellular immune response and increased Cry toxicity. The addition of Xn culture broth to Cry mixture significantly enhanced Bt efficacy in target insect spectrum and insecticidal activity.

키워드

참고문헌

  1. Adamo, S. A. (2008) Bidirectional connections between the immune system and the nervous system in insects, In Insect immunology; Beckage, N. E., Eds.; Academic Press, New York, pp. 129-149.
  2. Akhurst, R. J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121:303-309.
  3. Beckage, N. E. (2008) Insect immunology. 348 pp. Academic Press, New York.
  4. BenFarhat, D., M. Danmark, S. B. Khedher, S. Mahfoudh, S. Kammoun, and S. Tounsi (2013) Response of larval Ephestia kueniella (Lepidoptera: Pyralida) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. J. Invertebr. Pathol. 114:71-75. https://doi.org/10.1016/j.jip.2013.05.009
  5. Bravo, A., S. S. Gill and M. Soberon (2005) Bacillus thuringiensis mechanisms and use, In Comprehensive molecular insect science; Gilbert, L. I., K. Iatrou and S. S. Gill, Eds.; Elsevier; New York, pp. 175-206.
  6. Bravo, A., I. Gomez, H. Porta, B. I. Garcia-Gomez, C. Rodriguez-Almazan, L. Pardo and M. Soberon (2012) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. 6:17-26.
  7. Bravo, A., S. Likitvivatanavong, S. S. Gill and M. Soberon (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41:423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  8. Broderick, N. A., K. F. Raffa and J. Handelsman (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103:15196-15199. https://doi.org/10.1073/pnas.0604865103
  9. Broderick, N. A., K. F. Raffa and J. Handelsman (2010) Chemical modulators of the innate immune response alter gypsi moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10:129. https://doi.org/10.1186/1471-2180-10-129
  10. Brownbridge, M. and J. Margalit (1986) New Bacillus thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J. Invertebr. Pathol. 48:216-222. https://doi.org/10.1016/0022-2011(86)90126-6
  11. Contreras, E., C. Rausell and M. D. Real (2013) Tribolium castaneum apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J. Invertebr. Pathol. 113:209-213. https://doi.org/10.1016/j.jip.2013.04.002
  12. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie and D. Lereclus (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:807-813.
  13. Crickmore, N., J. Baum, A. Bravo, D. Lereclus, K. Narva, K, Sampson, E. Schnepf, M. Sun and D. R. Zeigler (2014) 'Bacillus thuringiensis toxin nomenclature'. http://www.btnomenclature.info.
  14. de Maagd, R. A., A. Bravo and N. Crickmore (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
  15. Dong, F., R. Shi, S. Zhang, T. Zhan, G. Wu, J. Shen and Z. Liu (2012) Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Appl. Microbiol. Biotechnol. 96: 921-929. https://doi.org/10.1007/s00253-012-4213-y
  16. Eom, S., Y. Park and Y. Kim (2014) Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 52:161-168. https://doi.org/10.1007/s12275-014-3251-9
  17. Gillespie, J. P., M. R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643. https://doi.org/10.1146/annurev.ento.42.1.611
  18. Gho, H. K., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1991) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hbner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29:180-183.
  19. Grizanova, E. V., I. M. Dubovskiy, M. M. A. Whitten and V. V. Glupov (2014) Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119:40-46. https://doi.org/10.1016/j.jip.2014.04.003
  20. Hwang, J., Y. Park and Y. Kim (2013) An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and IMD pathways by blocking eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83:151-169. https://doi.org/10.1002/arch.21103
  21. Jung, S. and Y. Kim (2006) Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35:1584-1589. https://doi.org/10.1093/ee/35.6.1584
  22. Kaya, H. K. and R. Gaugler (1993) Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  23. Kim, K., H. Kim, Y. Park, K. H. Kim and Y. Kim (2013) An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 52:35-43. https://doi.org/10.5656/KSAE.2013.01.1.080
  24. Kim, Y., D. Ji, S. Cho and Y. Park (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Physiol. 89:258-264. https://doi.org/10.1016/j.jip.2005.05.001
  25. Kirkpatrick, B. A., J. O. Washburn and L. E. Volkman (1998) AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens, J, Invertebr. Pathol. 72:63-72. https://doi.org/10.1006/jipa.1997.4752
  26. Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42:72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
  27. Park, H. W., D. K. Bideshi and B. A. Federici (2005) Synthesis of additional endotoxins in Bacillus thuringiensis subsp. morrisoni PG-14 and Bacillus thuringiensis subsp. jegathesan significantly improves their mosquitocidal efficacy. J. Med. Entomol. 42:337-341. https://doi.org/10.1093/jmedent/42.3.337
  28. Park, J. W. and B. L. Lee (2012) Insect immunology, In Insect molecular biology and biochemistry; Gilbert, L. I., Ed.; Academic Press, New York, pp. 480-512.
  29. Park, Y. and Y. Kim (2003) Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54:143-142.
  30. Park, Y., Y. Kim and D. Stanley (2004a) The bacterium Xenorhabdus nematophila inhibits phospholipase A2 from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91:371-373.
  31. Park, Y., Y. Kim, H. Tunaz and D. W. Stanley (2004b) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86:65-71. https://doi.org/10.1016/j.jip.2004.05.002
  32. Rahman, M. M., H. L. S. Roberts, M. Sarjan, S. Asgari and O. Schmidt (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101:2696-2699. https://doi.org/10.1073/pnas.0306669101
  33. Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin and Y. H. Je (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17:547-559.
  34. SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  35. Seo, S., S. Lee, Y. Hong and Y. Kim (2012) Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Entomol. 78:3816-3823. https://doi.org/10.1128/AEM.00301-12
  36. Shrestha, S. and Y. Kim (2009) Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47:774-782. https://doi.org/10.1007/s12275-009-0145-3
  37. Singh, G., P. J. Rup and O. Koul (2007) Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bull. Entomol. Res. 97:351-357. https://doi.org/10.1017/S0007485307005019
  38. Stanley, D. and Y. Kim (2014) Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33:20-63. https://doi.org/10.1080/07352689.2014.847631
  39. Vojtech, E., M. Meissle and G. M. Poppy (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res. 14:133-144. https://doi.org/10.1007/s11248-005-2736-z
  40. Washburn, J. O., B. A. Kirkpatrick and L. E. Volkman (1995) Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209:561-568. https://doi.org/10.1006/viro.1995.1288
  41. Washburn, J. O., J. F. Wong and L. E. Volkman (2001) Comparative pathogenesis of Helicoverpa zea S nucleopolyhedrovirus in noctuid larvae. J. Gen. Virol. 82:1777-1784. https://doi.org/10.1099/0022-1317-82-7-1777
  42. Wirth, M. C., Y. Yang, W. E. Walton, B. A. Federici and C. Berry (2007) Mtx toxins synergize Bacillus spaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl. Environ. Microbiol. 73: 6066-6071. https://doi.org/10.1128/AEM.00654-07
  43. Zhang, X., M. Candas, N. B. Griko, R. Taussig and L. A. Bulla, Jr. (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103:9897-9902. https://doi.org/10.1073/pnas.0604017103