Browse > Article
http://dx.doi.org/10.7585/kjps.2015.19.3.301

A Technique to Enhance Insecticidal Efficacy Using Bt Cry Toxin Mixture and Eicosanoid Biosynthesis Inhibitor  

Eom, Seonghyeon (Department of Bioresource Sciences, Andong National University)
Park, Youngjin (Department of Bioresource Sciences, Andong National University)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
The Korean Journal of Pesticide Science / v.19, no.3, 2015 , pp. 301-311 More about this Journal
Abstract
To enhance Bacillus thuringiensis (Bt) efficacy, four Cry toxins were purified from four different Bt strains and assessed in their combined efficacy. The Cry mixtures significantly expanded their target insect spectra. Bacterial culture broth of Xenorhabdus nematophila (Xn) significantly suppressed insect cellular immune response and increased Cry toxicity. The addition of Xn culture broth to Cry mixture significantly enhanced Bt efficacy in target insect spectrum and insecticidal activity.
Keywords
Cry toxin; immunosuppression; Bacillus thuringiensis; Xenorhabdus nematophila;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 BenFarhat, D., M. Danmark, S. B. Khedher, S. Mahfoudh, S. Kammoun, and S. Tounsi (2013) Response of larval Ephestia kueniella (Lepidoptera: Pyralida) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. J. Invertebr. Pathol. 114:71-75.   DOI   ScienceOn
2 Bravo, A., S. S. Gill and M. Soberon (2005) Bacillus thuringiensis mechanisms and use, In Comprehensive molecular insect science; Gilbert, L. I., K. Iatrou and S. S. Gill, Eds.; Elsevier; New York, pp. 175-206.
3 Bravo, A., I. Gomez, H. Porta, B. I. Garcia-Gomez, C. Rodriguez-Almazan, L. Pardo and M. Soberon (2012) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. 6:17-26.
4 Bravo, A., S. Likitvivatanavong, S. S. Gill and M. Soberon (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41:423-431.   DOI
5 Broderick, N. A., K. F. Raffa and J. Handelsman (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103:15196-15199.   DOI
6 Broderick, N. A., K. F. Raffa and J. Handelsman (2010) Chemical modulators of the innate immune response alter gypsi moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10:129.   DOI   ScienceOn
7 Brownbridge, M. and J. Margalit (1986) New Bacillus thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J. Invertebr. Pathol. 48:216-222.   DOI
8 Contreras, E., C. Rausell and M. D. Real (2013) Tribolium castaneum apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J. Invertebr. Pathol. 113:209-213.   DOI
9 Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie and D. Lereclus (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:807-813.
10 Crickmore, N., J. Baum, A. Bravo, D. Lereclus, K. Narva, K, Sampson, E. Schnepf, M. Sun and D. R. Zeigler (2014) 'Bacillus thuringiensis toxin nomenclature'. http://www.btnomenclature.info.
11 de Maagd, R. A., A. Bravo and N. Crickmore (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193-199.   DOI
12 Dong, F., R. Shi, S. Zhang, T. Zhan, G. Wu, J. Shen and Z. Liu (2012) Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Appl. Microbiol. Biotechnol. 96: 921-929.   DOI
13 Eom, S., Y. Park and Y. Kim (2014) Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 52:161-168.   DOI   ScienceOn
14 Gillespie, J. P., M. R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643.   DOI
15 Gho, H. K., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1991) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hbner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29:180-183.
16 Grizanova, E. V., I. M. Dubovskiy, M. M. A. Whitten and V. V. Glupov (2014) Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119:40-46.   DOI   ScienceOn
17 Kim, K., H. Kim, Y. Park, K. H. Kim and Y. Kim (2013) An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 52:35-43.   DOI   ScienceOn
18 Hwang, J., Y. Park and Y. Kim (2013) An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and IMD pathways by blocking eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83:151-169.   DOI   ScienceOn
19 Jung, S. and Y. Kim (2006) Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35:1584-1589.   DOI
20 Kaya, H. K. and R. Gaugler (1993) Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181-206.   DOI
21 Kim, Y., D. Ji, S. Cho and Y. Park (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Physiol. 89:258-264.   DOI
22 Kirkpatrick, B. A., J. O. Washburn and L. E. Volkman (1998) AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens, J, Invertebr. Pathol. 72:63-72.   DOI
23 Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42:72-76.   DOI
24 Park, Y., Y. Kim and D. Stanley (2004a) The bacterium Xenorhabdus nematophila inhibits phospholipase A2 from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91:371-373.
25 Park, H. W., D. K. Bideshi and B. A. Federici (2005) Synthesis of additional endotoxins in Bacillus thuringiensis subsp. morrisoni PG-14 and Bacillus thuringiensis subsp. jegathesan significantly improves their mosquitocidal efficacy. J. Med. Entomol. 42:337-341.   DOI
26 Park, J. W. and B. L. Lee (2012) Insect immunology, In Insect molecular biology and biochemistry; Gilbert, L. I., Ed.; Academic Press, New York, pp. 480-512.
27 Park, Y. and Y. Kim (2003) Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54:143-142.
28 Park, Y., Y. Kim, H. Tunaz and D. W. Stanley (2004b) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86:65-71.   DOI
29 Rahman, M. M., H. L. S. Roberts, M. Sarjan, S. Asgari and O. Schmidt (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101:2696-2699.   DOI
30 Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin and Y. H. Je (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17:547-559.
31 SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
32 Seo, S., S. Lee, Y. Hong and Y. Kim (2012) Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Entomol. 78:3816-3823.   DOI
33 Vojtech, E., M. Meissle and G. M. Poppy (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res. 14:133-144.   DOI
34 Shrestha, S. and Y. Kim (2009) Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47:774-782.   DOI
35 Singh, G., P. J. Rup and O. Koul (2007) Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bull. Entomol. Res. 97:351-357.   DOI
36 Stanley, D. and Y. Kim (2014) Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33:20-63.   DOI
37 Washburn, J. O., B. A. Kirkpatrick and L. E. Volkman (1995) Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209:561-568.   DOI
38 Washburn, J. O., J. F. Wong and L. E. Volkman (2001) Comparative pathogenesis of Helicoverpa zea S nucleopolyhedrovirus in noctuid larvae. J. Gen. Virol. 82:1777-1784.   DOI
39 Wirth, M. C., Y. Yang, W. E. Walton, B. A. Federici and C. Berry (2007) Mtx toxins synergize Bacillus spaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl. Environ. Microbiol. 73: 6066-6071.   DOI
40 Zhang, X., M. Candas, N. B. Griko, R. Taussig and L. A. Bulla, Jr. (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103:9897-9902.   DOI   ScienceOn
41 Beckage, N. E. (2008) Insect immunology. 348 pp. Academic Press, New York.
42 Adamo, S. A. (2008) Bidirectional connections between the immune system and the nervous system in insects, In Insect immunology; Beckage, N. E., Eds.; Academic Press, New York, pp. 129-149.
43 Akhurst, R. J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121:303-309.