• Title/Summary/Keyword: Cellular imaging

검색결과 185건 처리시간 0.029초

Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material

  • Kim, Eun-Seok;Kim, Jae-Jin;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제2권1호
    • /
    • pp.7-13
    • /
    • 2010
  • Although most researchers agree that platelet-rich plasma (PRP) is a good source of autogenous growth factors, its effect on bone regeneration is still controversial. The purpose of this study was to evaluate whether increasing angiogenic factors in the human PRP to enhance new bone formation through rapid angiogenesis. MATERIAL AND METHODS. In vitro, the human platelets were activated with application of shear stress, $20\;{\mu}g/ml$ collagen, 2 mM $CaCl_2$ and 10U thrombin/$1\;{\times}\;10^9$ platelets. Level of vascular endothelial growth factor (VEGF) and platelet microparticle (PMP) in the activated platelets were checked. In the animal study, human angiogenic factors-enriched PRP was tested in 28 athymic rat's cranial critical bone defects with $\beta$-TCP. Angiogenesis and osteogenesis were evaluated by laser Doppler perfusion imaging, histology, dual energy X-ray densinometry, and micro-computed tomography. RESULTS. In vitro, this human angiogenic factors-enriched PRP resulted in better cellular proliferation and osteogenic differentiation. In vivo, increasing angiogenic potential of the PRP showed significantly higher blood perfusion around the defect and enhanced new bone formation around acellular bone graft material. CONCLUSION. Angiogenic factor-enriched PRP leads to faster and more extensive new bone formation in the critical size bone defect. The results implicate that rapid angiogenesis in the initial healing period by PRP could be supposed as a way to overcome short term effect of the rapid angiogenesis.

Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Shin, Dong-Myung;Huh, Jin Won;Lee, Sei Won;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • 제77권3호
    • /
    • pp.116-123
    • /
    • 2014
  • Background: Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods: We used fluorescence optical imaging with quantum dots (QDs) to track intravenously injected MSCs. In addition, we used a human Alu sequence-based real-time polymerase chain reaction method to assess the lungs, liver, kidney, and spleen in mice with elastase-induced emphysema and control mice at 1, 4, 24, 72, and 168 hours after MSCs injection. Results: The injected MSCs were detected with QD fluorescence at 1- and 4-hour postinjection, and the human Alu sequence was detected at 1-, 4- and 24-hour postinjection in control mice (lungs only). Injected MSCs remained more in mice with elastase-induced emphysema at 1, 4, and 24 hours after MSCs injection than the control lungs without emphysema. Conclusion: In conclusion, our results show that injected MSCs were observed at 1 and 4 hours post injection and more MSCs remain in lungs with emphysema.

뼈전이의 방사성동위원소 통증치료 (Radiopharmaceuticals for the Therapy of Metastatic Bone Pain)

  • 안병철
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권2호
    • /
    • pp.82-89
    • /
    • 2006
  • Bone metastasis is a common sequelae of solid malignant tumors such as prostate, breast, lung, and renal cancers, which can lead to various complications, including fractures, hypercalcemia, and bone pain, as well as reduced performance status and quality of life it occurs as a result of a complex pathophysiologic process between host and tumor cells leading to cellular invasion, migration adhesion, and stimulation of osteoclastic and osteoblastic activity. Several sequelae occur as a result of osseous metastases and resulting bone pain can lead to significant debilitation. A multidisciplinary approach is usually required not only to address the etiology of the pain and its complicating factors but also to treat the patient appropriately. Pharmaceutical therapy of bone pain, includes non-steroidal analgesics, opiates, steroids, hormones, bisphosphonates, and chemotherapy. While external beam radiation therapy remains the mainstay of pain palliation of a solitary lesions, bone seeking radiopharmaceuticals have entered the therapeutic armamentarium for the treatment of multiple painful osseous lesions. $^{32}P,\;^{89}SrCl,\;^{153}Sm-EDTMP,\;^{188}Re/^{186}Re-HEDP,\;and\;^{177}Lu-EDTMP$ can be used to treat painful osseous metastases. These various radiopharmaceuticals have shown good efficacy in relieving bone pain secondary to bone metastasis. This systemic form of metabolic radiotherapy is simple to administer and complements other treatment options. This has been associated with improved mobility in many patients, reduced dependence on narcotic and non-narcotic analgesics, improved performance status and quality of life, and, in some studios, improved survival. All of these agents, although comprising different physical and chemical characteristics, offer certain advantages in that they are simple to administer, are well tolerated by the patient if used appropriately, and can be used alone or in combination with the other forms of treatment. This article illustrates the salient features of these radiopharmaceuticals, including the usual therapuetic dose, method of administration, and indications for use and also describe about the pre-management checklists, and jndication/contraindication and follow-up protocol.

Inhibitory Effect of Ginsenosides on NMDA Receptor-mediated Signals in Rat Hippocampal Neurons

  • Kim Sunoh;Choo Min-Kyung;Nah Seung-Yeol;Kim Dong-Hyun;Rhim Hyewhon
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.531-544
    • /
    • 2002
  • Ginseng is the best known and most popular herbal medicine used worldwide. Ameliorating effects of ginseng were observed on the models of scopolamine-induced, aged or hippocampal lesioned learning and memory deficits. Further beneficial effects of ginseng were observed on neuronal cell death associated with ischemia or glutamate toxicity. In spite of these beneficial effects of ginseng on the CNS, little scientific evidence shows at the cellular level. In the present study, we have employed cultures of rat hippocampal neurons and examined the direct modulation of ginseng on NMDA receptor-induced changes in $[Ca^{2+}]_i$ and -gated currents using fura-2-based digital imaging and perforated whole-cell patch-clamp techniques, respectively. We found that ginseng total saponins inhibited NMDA-induced but less effectively glutamate-induced increase in $[Ca^{2+}]_i$ Ginseng total saponins also modulated $Ca^{2+}$ transients evoked by depolarization with 50 mM KCI along with its own effects on $[Ca^{2+}]_i$. Among ginsenosides tested, ginsenoside $Rg_3$ was found to be the most potent component for ginseng actions on NMDA receptors. Furthermore, we examined the inhibitory effects ofbiotransformants of ginsenosides on NMDA receptor using purified stereoisomers of ginsenosides. 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_3$, produced the strongest inhibition while 20(S)-ginsenoside $Rh_1$ and Compound K produced the moderate inhibition on NMDA-induced increase in $[Ca^{2+}]_i$. The data obtained suggest that the inhibition of NMDA receptors by ginseng, in particular by 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_2$, could be one of mechanisms for ginsengmediated neuroprotective actions.

  • PDF

동결 보존에 의한 돼지 정자 세포질 칼슘 신호의 변화 (Alteration of Cytosolic Ca$^{2+}$ Signal by Cryopreservation in Pig Sperm)

  • 이선우;이옥화;김준철;명평근;박창식;우선희
    • 약학회지
    • /
    • 제50권6호
    • /
    • pp.409-414
    • /
    • 2006
  • Although mammalian sperms are cryopreserved for in vitro fertilization a process of cryopreservation decreases the fertility. Acrosome reaction requires depolarization-induced Ca$^{2+}$ influx and Ca$^{2+}$ releases from the Ca$^{2+}$ stores. To examine whether the cellular Ca$^{2+}$ mobilization is altered by a sperm cryopreservation we compared cytosolic Ca$^{2+}$ signals between fresh and cryopreserved pig sperms using confocal Ca$^{2+}$ imaging. The magnitudes of depolarization induced Ca$^{2+}$ increases were significantly smaller in cryopreserved sperms. Exposures to 10 mM caffeine or 5 ${\mu}$M thapsigargin elicited less Ca$^{2+}$ increases in the cryopreserved sperms compared to fresh sperms. In addition, progesterone-trig-gered Ca$^{2+}$ rises, that are thought to enhance acrosome reaction, were completely abolished in the cryopreserved sperms. These results suggest that storage and(/or) release of Ca$^{2+}$ from the intracellular Ca$^{2+}$ stores in pig sperms are significantly impaired by the process of cryopreservation.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.

Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors

  • Ri, Hwajung;Lee, Jongbin;Sonn, Jun Young;Yoo, Eunseok;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.301-312
    • /
    • 2019
  • Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.

형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징 (Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor)

  • 장윤관;서정수;석명은;김태진
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.366-372
    • /
    • 2021
  • 캐드헤린-카테닌 복합체는 세포의 부착 접합부에서 힘의 전달에 중요한 역할을 하는 것으로 생각된다. 그러나 기계적 힘 신호를 시각화 하고 감지하는 적절한 도구의 부재로, 캐드헤린-카테닌 복합체가 세포 간 접합에서 힘 전달을 조절하는 기본 메커니즘은 아직 파악하기가 어렵다. 본 연구에서는 형광공명에너지전이를 기반으로 설계된 알파카테닌 센서를 사용하여 캐드헤린에 의해 매개되는 힘 전달을 시각화 하였다. 이러한 결과는 알파카테닌이 세포-세포 접합부에서 캐드헤린 매개 기계적에너지변환(mechanotransduction) 경로의 핵심적인 힘 트랜스듀서(force transducer) 임을 보여준다. 본 연구는 향후 기계적 힘의 세포-세포 상호간의 의사소통에 미치는 영향과 생리학적/병리학적 현상과의 관계를 연구하는 데 중요한 이해를 제공할 것이라 본다.

Evaluation of intracellular uptake of cyclic RGD peptides in integrin αvβ3-expressing tumor cells

  • Soyoung Lee;Young-Hwa Kim;In Ho Song;Ji Young Choi;Hyewon Youn;Byung Chul Lee;Sang Eun Kim
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.92-101
    • /
    • 2020
  • The cyclic Arg-Gly-Asp (cRGD) peptide is well-known as a binding molecule to the integrin αvβ3 receptor which is highly expressed on activated endothelial cells and new blood vessels in tumors. Although numerous results have been reported by the usage of cRGD peptide-based ligands for cancer diagnosis and therapy, the distinct mechanisms, and functions of cRGD-integrin binding to cancer cells are still being investigated. In this study, we evaluated the internalization efficacy of different types of cRGD peptides (monomer, dimer and tetramer form) in integrin αvβ3 overexpressing cancer cells. Western blot and flow cytometric analysis showed U87MG expresses highly integrin αvβ3, whereas CT-26 does not show integrin αvβ3 expression. Cytotoxicity assay indicated that all cRGD peptides (0-200 µM) had at least 70-80% of viability in U87MG cells. Fluorescence images showed cRGD dimer peptides have the highest cellular internalization compare to cRGD monomer and cRGD tetramer peptides. Additionally, transmission electron microscope results clearly visualized the endocytic internalization of integrin αvβ3 receptors and correlated with confocal microscopic results. These results support the rationale for the use of cRGD dimer peptides for imaging, diagnosis, or therapy of integrin αvβ3-rich glioblastoma.

The Effectiveness of 448-kHz Capacitive Resistive Monopolar Radiofrequency for Subcutaneous Fat Reduction in a Porcine Model

  • Kwon, Tae-Rin;Lee, Sung-Eun;Kim, Jong Hwan;Jeon, Yong Jae;Jang, You Na;Yoo, Kwang Ho;Kim, Beom Joon
    • Medical Lasers
    • /
    • 제8권2호
    • /
    • pp.64-73
    • /
    • 2019
  • Background and Objectives The effectiveness of many physiotherapy modalities in reducing subcutaneous fat has been investigated in numerous previous studies. However, to the best of our knowledge, there have been no attempts to determine the effectiveness of physiotherapy modalities in body contouring. The present report determined the effect of 448-kHz capacitive resistive monopolar radiofrequency (CRMRF) in a porcine model. Materials and Methods This study investigated the effect of selective destruction of the subcutaneous fat layer in abdominal fat tissue using CRMRF. The effects of two types of CRMRF (capacitive electric transfer (CET) and resistive electric transfer (RET)) treatment were evaluated using regular digital photography in addition to thermal imaging evaluation, ultrasound measurement, hematological evaluation, and histologic analyses (H&E (hematoxylin and eosin), Oil red O, and immunohistochemistry staining). Results Preclinical evaluation was performed to obtain the data for comparison of the safety and efficacy of the subcutaneous fat reduction after applying CRMRF using CET and RET. After treatment, the thermal transmission was effective, and a 42-47℃ temperature change was observed in the fat layer while an approximately temperature of 42℃ was confirmed on the skin surface. Moreover, after the application of both types of CRMRF treatment, fibrotic septa were observed in the adipose tissue induced by heat at the treatment sites. TUNEL staining was also performed to confirm the process of apoptosis in the adipocytes. Conclusion These results suggest that both CET and RET for CRMRF treatment are safe and effective for subcutaneous fat reduction in a porcine model.