Alteration of Cytosolic Ca$^{2+}$ Signal by Cryopreservation in Pig Sperm

동결 보존에 의한 돼지 정자 세포질 칼슘 신호의 변화

  • Lee, Sun-Woo (College of Pharmacy, Chungnam National University) ;
  • Li, Yu-Hua (College of Pharmacy, Chungnam National University) ;
  • Kim, Joon-Chul (College of Pharmacy, Chungnam National University) ;
  • Myung, Pyung-Keun (College of Pharmacy, Chungnam National University) ;
  • Park, Chang-Sik (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Woo, Sun-Hee (College of Pharmacy, Chungnam National University)
  • 이선우 (충남대학교 약학대학) ;
  • 이옥화 (충남대학교 약학대학) ;
  • 김준철 (충남대학교 약학대학) ;
  • 명평근 (충남대학교 약학대학) ;
  • 박창식 (충남대학교 동물자원학부 형질전환 복제돼지 연구센터) ;
  • 우선희 (충남대학교 약학대학)
  • Published : 2006.12.31

Abstract

Although mammalian sperms are cryopreserved for in vitro fertilization a process of cryopreservation decreases the fertility. Acrosome reaction requires depolarization-induced Ca$^{2+}$ influx and Ca$^{2+}$ releases from the Ca$^{2+}$ stores. To examine whether the cellular Ca$^{2+}$ mobilization is altered by a sperm cryopreservation we compared cytosolic Ca$^{2+}$ signals between fresh and cryopreserved pig sperms using confocal Ca$^{2+}$ imaging. The magnitudes of depolarization induced Ca$^{2+}$ increases were significantly smaller in cryopreserved sperms. Exposures to 10 mM caffeine or 5 ${\mu}$M thapsigargin elicited less Ca$^{2+}$ increases in the cryopreserved sperms compared to fresh sperms. In addition, progesterone-trig-gered Ca$^{2+}$ rises, that are thought to enhance acrosome reaction, were completely abolished in the cryopreserved sperms. These results suggest that storage and(/or) release of Ca$^{2+}$ from the intracellular Ca$^{2+}$ stores in pig sperms are significantly impaired by the process of cryopreservation.

Keywords

References

  1. Richter, M. A., Haning, R. V. Jr. and Shapiro, S. S. : Artificial donor insemination: fresh versus frozen semen; the patient as her own control. Fertil. Steril. 41, 277 (1984) https://doi.org/10.1016/S0015-0282(16)47604-1
  2. Centola, G. M., Raubertas, R. F. and Mattox, J. H. : Cryopreservation of human semen. Comparison of cryopreservatives, sources of variability, and prediction of post-thaw survival. J. Androl. 13, 283 (1992)
  3. Alvarez, J. G. and Storey, B. T. : Evidence that membrane stress contributes more than lipid peroxidation to sublethal cryodamage in cryopreserved human sperm: glycerol and other polyols as sole cryoprotectant. J. Androl. 14, 199 (1993)
  4. Agarwal, A., Tolentino, M. V. Jr., Sidhu, R. S., Ayzman, I., Lee, J. C., Thomas, A. J. Jr. and Shekarriz, M. : Effect of cryopreservation on semen quality in patients with testicular cancer. Urology 46, 382 (1995) https://doi.org/10.1016/S0090-4295(99)80224-6
  5. McLaughlin, E. A., Ford, W. C. and Hull, M. G. : Effects of cryopreservation on the human sperm acrosome and its response to A23187. J. Reprod. Fertil. 99, 71 (1993) https://doi.org/10.1530/jrf.0.0990071
  6. Lindemann, C. B. and Kanous, K. S. : Regulation of mammalian sperm motility. Arch. Androl. 23, 1 (1989) https://doi.org/10.3109/01485018908986783
  7. Garbers, D. L. : Molecular basis of fertilization. Annu. Rev. Biochem. 58, 719 (1989) https://doi.org/10.1146/annurev.bi.58.070189.003443
  8. Linares-Hernandez, L., Guzman-Grenfell, A. M., Hicks- Gomez, J. J. and Gonzalez-Martinez, M. T. : Voltage-dependent calcium influx in human sperm assessed by simultaneous optical detection of intracellular calcium and membrane potential. Biochim. Biophys. Acta 1372, 1 (1998) https://doi.org/10.1016/S0005-2736(98)00035-2
  9. Ho, H. C. and Suarez, S. S. : An inositol 1,4,5-trisphosphate receptor-gated intracellular $Ca^{2+}$ store is involved in regulating sperm hyperactivated motility. Biol. Reprod. 65, 1606 (2001) https://doi.org/10.1095/biolreprod65.5.1606
  10. Rossato, M., Di Virgilio, F., Rizzuto, R., Galeazzi, C. and Foresta, C. : Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Mol. Hum. Reprod. 7, 119 (2001) https://doi.org/10.1093/molehr/7.2.119
  11. Garcia, M. A. and Meizel, S. : Progesterone-mediated calcium influx and acrosome reaction of human spermatozoa: pharmacological investigation of T-type calcium channels. Biol. Reprod. 60, 102 (1999) https://doi.org/10.1095/biolreprod60.1.102
  12. Harper, C. V., Kirkman-Brown, J. C., Barratt, C. L. and Publicover, S. J. : Encoding of progesterone stimulus intensity by intracellular [$Ca^{2+}$] ([$Ca^{2+}$]i) in human spermatozoa. Biochem. J. 372, 407 (2003) https://doi.org/10.1042/BJ20021560
  13. Wang, W. H., Day, B. N. and Wu, G. M. : How does polyspermy happen in mammalian oocytes- Microsc. Res. Tech. 61, 335 (2003) https://doi.org/10.1002/jemt.10346
  14. Park, C. S. and Yi, Y. J. : Comparison of semen characteristics, sperm freezability and testosterone concentration between Duroc and Yorkshire boars during seasons. Anim. Reprod. Sci. 73, 53 (2002) https://doi.org/10.1016/S0378-4320(02)00129-X
  15. Gualtieri, R., Boni, R., Tosti, E., Zagami, M. and Talevi, R. : Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro. Reproduction 129, 51 (2005) https://doi.org/10.1530/rep.1.00374
  16. Parrish, J. J., Susko-Parrish, J. L. and Graham, J. K. : In vitro capacitation of bovine spermatozoa: role of intracellular calcium. Theriogenology 51, 461 (1999) https://doi.org/10.1016/S0093-691X(98)00240-4
  17. Yoshida, M., Ishikawa, M., Izumi, H., De Santis, R. and Morisawa, M. : Store-operated calcium channel regulates the chemotactic behavior of ascidian sperm. Proc. Natl. Acad. Sci. U.S.A. 100, 149 (2003)
  18. Effect of cryo-injury on progesterone receptor(s) on canine spermatozoa and its response to progesterone. Theriogenology 64, 844 (2005) https://doi.org/10.1016/j.theriogenology.2004.10.021