DOI QR코드

DOI QR Code

Evaluation of intracellular uptake of cyclic RGD peptides in integrin αvβ3-expressing tumor cells

  • Soyoung Lee (Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Young-Hwa Kim (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • In Ho Song (Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Ji Young Choi (Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Hyewon Youn (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Byung Chul Lee (Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Sang Eun Kim (Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine)
  • Received : 2020.12.17
  • Accepted : 2020.12.29
  • Published : 2020.12.31

Abstract

The cyclic Arg-Gly-Asp (cRGD) peptide is well-known as a binding molecule to the integrin αvβ3 receptor which is highly expressed on activated endothelial cells and new blood vessels in tumors. Although numerous results have been reported by the usage of cRGD peptide-based ligands for cancer diagnosis and therapy, the distinct mechanisms, and functions of cRGD-integrin binding to cancer cells are still being investigated. In this study, we evaluated the internalization efficacy of different types of cRGD peptides (monomer, dimer and tetramer form) in integrin αvβ3 overexpressing cancer cells. Western blot and flow cytometric analysis showed U87MG expresses highly integrin αvβ3, whereas CT-26 does not show integrin αvβ3 expression. Cytotoxicity assay indicated that all cRGD peptides (0-200 µM) had at least 70-80% of viability in U87MG cells. Fluorescence images showed cRGD dimer peptides have the highest cellular internalization compare to cRGD monomer and cRGD tetramer peptides. Additionally, transmission electron microscope results clearly visualized the endocytic internalization of integrin αvβ3 receptors and correlated with confocal microscopic results. These results support the rationale for the use of cRGD dimer peptides for imaging, diagnosis, or therapy of integrin αvβ3-rich glioblastoma.

Keywords

Acknowledgement

This study was funded by the Korean Research Foundation grant (NRF-2018M2A2B3A02071842).

References

  1. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res 2010;339:269-80.
  2. Calderwood DA. Integrin activation. J Cell Sci 2004;117:657-666.
  3. Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019;35:347-367.
  4. Morse EM, Brahme NN, Calderwood DA. Integrin cytoplasmic tail interactions. Biochemistry 2014;53:810-20.
  5. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA. Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res 1998;4:2625-34.
  6. Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol 2003;9:1144-1155.
  7. LaFoya B, Munroe JA, Miyamoto A, Detweiler MA, Crow JJ, Gazdik T, Albig AR. Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018;19:449.
  8. Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb Perspect Biol 2011;3:a005074.
  9. Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology 1995;13:265-270.
  10. Pierschbacher, MD, Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984;309:30-33.
  11. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491-7.
  12. Nieberler M, Reuning U, Reichart F, et al. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017;9:116.
  13. Zhu J, Zhu J, Springer TA. Complete integrin headpiece opening in eight steps. J Cell Biol 2013;201:1053-1068.
  14. Van Agthoven JF, Xiong J-P, Alonso JL, Rui X, Adair BD, Goodman SL, Arnaout MA. Structural basis for pure antagonism of integrin αvβ3 by a high-affinity form of fibronectin. Nat Struct Mol Biol 2014;21:384-388.
  15. Zhou Y, Chakraborty S, Liu S. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT. Theranostic 2011;1:58-82.
  16. Danhier F, Le Breton A, Preat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 2012;9:2961-73.
  17. Fani M, Psimadas D, Zikos C, Xanthopoulos S, Loudos GK, Bouziotis P, Varvarigou AD. Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res 2006;26:431-4.
  18. Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, Li F, Chen X. microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 2007;48:1536-44.
  19. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010;10:9-22.
  20. Lee BC, Moon BS, Kim JS, Jung JH, Park HS, Katzenellenbogen JA, Kim SE. Synthesis and biological evaluation of RGD peptides with the 99mTc/188Re chelated iminodiacetate core: highly enhanced uptake and excretion kinetics of theranostics against tumor angiogenesis. RSC Adv 2013;3:782-792.
  21. Sancey L, Garanger E, Foillard S, Schoehn G, Hurbin A, Albiges-Rizo C, Boturyn D, Souchier C, Grichine A, Dumy P, Coll JL. Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide. Mol Ther 2009;17:837-43.
  22. Liu Z, Jia B, Zhao H, Chen X, Wang F. Specific targeting of human integrin α(v)β (3) with (111) In-labeled AbegrinTM in nude mouse models. Mol Imaging Biol 2011;13:112-20.
  23. Wang H, Chen K, Cai W, Li Z, He L, Kashefi A, Chen X. Integrin-targeted imaging and therapy with RGD4C-TNF fusion protein. Mol Cancer Ther 2008;7:1044-53.
  24. Jin ZH, Furukawa T, Waki A, Akaji K, Coll JL, Saga T, Fujibayashi Y. Effect of multimerization of a linear Arg-Gly-Asp peptide on integrin binding affinity and specificity. Biol Pharm Bul 2010;33:370-8.
  25. Schilling R, Geserick P, Leverkus M. Characterization of the ripoptosome and its components: implications for anti-inflammatory and cancer therapy. Methods Enzymo 2014;545:83-102.
  26. Borza CM, Pozzi A, Borza DB, Pedchenko V, Hellmark T, Hudson BG, Zent R. Integrin alpha3beta1, a novel receptor for alpha3(IV) noncollagenous domain and a trans-dominant Inhibitor for integrin alphavbeta3. J Biol Chem 2006;281:20932-9.
  27. Yao B, He QM, Tian L, Xiao F, Jiang Y, Zhang R, Li G, Zhang L, Hou JM, Wang L, Cheng XC, Wen YJ, Kan B, Li J, Zhao X, Hu B, Zhou Q, Zhang L, Wei YQ. Enhanced antitumor effect of the combination of tumstatin gene therapy and gemcitabine in murine models. Hum Gene Ther 2005;16:1075-86.
  28. Paolillo M, Galiazzo MC, Daga A, Ciusani E, Serra M, Colombo L and Schinelli S: An RGD small-molecule integrin antagonist induces detachment-mediated anoikis in glioma cancer stem cells. Int J Oncol 2018;53: 2683-2694.
  29. Kamata T, Handa M, Takakuwa S, Sato Y, Kawai Y, Ikeda Y, Aiso S. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin. PLoS One 2013;8:e66096.
  30. Bridgewater RE, Norman JC, Caswell PT. Integrin trafficking at a glance. J Cell Sci 2012;125:3695-701.