• Title/Summary/Keyword: Cellular characteristics

Search Result 721, Processing Time 0.028 seconds

Design of Dual Band Log-Periodic Dipole Antennas for the Cellular/IMT-2000 Band (Cellular/IMT-2000 공용 이중밴드 대수주기 다이폴 안테나 설계)

  • 최학근;오종대;김명철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1216-1224
    • /
    • 2003
  • In this paper Dual Band Log-Periodic Dipole Antenna(DLPDA), which can be used at the Cellular/IMT-2000 band, is proposed. The proposed antenna is composed of 2 of Log-Periodic Dipole Antenna(LPDA) and parasitic elements. To investigate the reliability of the proposed antenna, DLPDA is designed at the cellular/IMT-2000 band and analyzed by using the method of moment, Numerical results are compared with measured results. It is shown that although the antenna length is 70 cm, its radiation characteristics satisfied the design goals of gain, VSWR and beamwidth at the Cellular/IMT-2000 band. From these results, the proposed DLPDA is confirmed as the dual band antenna which can be used at the cellular/IMT-2000 band.

Experimental and numerical investigation on honeycomb, modified honeycomb, and spiral shapes of cellular structures

  • Faisal Ahmed, Shanta;Md Abdullah Al, Bari
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.665-673
    • /
    • 2022
  • Additive manufacturing is an emerging method to manufacture objects with complex shapes and intricate geometry, such as cellular structures. The cellular structures can widely be used in lightweight application as it provides a high strength-to-load ratio. Under the various testing condition, each topology shows different mechanical properties. This study investigates the structural response of various types of cellular structures in compression loading, both experimentally and numerically. For that purpose, honeycomb, modified honeycomb, and spiral-type topology were selected to investigate. Besides, structural properties change by changing the cell size for each topology is also investigated. The specimens were subjected to a compression test by a universal testing machine to determine the absorbed energy and other mechanical properties. An implicit numerical study was also conducted to determine cellular structure's mechanical characteristics. The experimental and numerical results show that the honeycomb structure absorbs the maximum energy compared to the other structures. The experimentally and numerically calculated absorbed energy for the 4.8 mm honeycomb structure was 32.2J and 30.63J, respectively. The results also show that the increase of cell size for a particular cellular structure reduces the energy-absorbing ability of that structure.

Evolutionary Signature of Information Transfer Complexity in Cellular Membrane Proteomes

  • Kim, Jong-Min;Kim, Byung-Gee;Oh, S.-June
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.111-121
    • /
    • 2009
  • Cell membrane proteins play crucial roles in the cell's molecular interaction with its environment and within itself. They consist of membrane-bound proteins and many types of transmembrane (TM) proteins such as receptors, transporters, channel proteins, and enzymes. Membrane proteomes of cellular organisms reveal some characteristics in their global topological distribution according to their evolutionary positions, and show their own information transfer complexity. Predicted transmembrane segments (TMSs) in membrane proteomes with HMMTOP showed near power-law distribution and frequency characteristics in 6-TMS and 7-TMS proteins in prokaryotes and eukaryotes, respectively. This reaffirms the important roles of membrane receptors in cellular communication and biological evolutionary history.

A study on the consumer's perceptual characteristics of cellular-phone payment system (휴대폰결제 방식에 대한 소비자의 인지적 특성에 관한 연구)

  • Lee Seok Gi;Jo Yeong Bin;Kim Seong Hui
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.673-677
    • /
    • 2002
  • Cellular-phone payment system is a new innovating technology emerged in Korea since fool. Previous studies concerning the electronic payment system are usually about the payment process itself, so they focused on the matter such as security or the robustness of the process. The study from the angle of behavioral science seldom exists. This article Identifies which characteristic of the cellular-phone payment service affects to the user status (user, non-users). To do this, we used perceptual 4 characteristics in Roger's Technology Acceptance Model with one additional characteristic-security.

  • PDF

Design of CPS Architecture for Ultra Low Latency Control (초저지연 제어를 위한 CPS 아키텍처 설계)

  • Kang, Sungjoo;Jeon, Jaeho;Lee, Junhee;Ha, Sujung;Chun, Ingeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.227-237
    • /
    • 2019
  • Ultra-low latency control is one of the characteristics of 5G cellular network services, which means that the control loop is handled in milliseconds. To achieve this, it is necessary to identify time delay factors that occur in all components related to CPS control loop, including new 5G cellular network elements such as MEC, and to optimize CPS control loop in real time. In this paper, a novel CPS architecture for ultra-low latency control of CPS is designed. We first define the ultra-low latency characteristics of CPS and the CPS concept model, and then propose the design of the control loop performance monitor (CLPM) to manage the timing information of CPS control loop. Finally, a case study of MEC-based implementation of ultra-low latency CPS reviews the feasibility of future applications.

A Study on the Number Recognition using Cellular Neural Network (Cellular Neural Network을 이용한 숫자인식에 관한 연구)

  • 전흥우;김명관;정금섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.819-826
    • /
    • 2002
  • Cellular neural networks(CNN) are neural networks that have locally connected characteristics and real-time image processing. Locally connected characteristics are suitable for VLSI implementation. It also has applications in such areas as image processing and pattern recognition. In this thesis cellular neural networks are used for feature detection in number recognition at the stage of re-processing. The four or six directional shadow detectors are used in numbers recognition. At the stage of classification, this result of feature detection was simulated by using a multi-layer back Propagation neural network. The experiments indicate that the CNN feature detectors capture good features for number recognition tasks.

Development of Zinc Air Battery for Cellular Phone (휴대전화기용 아연공기전지 개발)

  • 엄승욱;김지훈;문성인;윤문수;김주용;박정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.936-941
    • /
    • 2004
  • In recent years, the rapid growth of portable electronic devices requires the high-energy density characteristics of batteries. Zinc air batteries have specific capacity as high as 820mAh/g. However, Zinc air batteries used for hearing aid applications only so far, because the atmosphere could affect it, and it has weakness in the rate capability. However, recent developments of electrode manufacturing technologies made us to overcome that weakness. And the efforts of applying zinc air batteries to portable electronic devices, especially in cellular phone application have been increased. In this paper, the effects of conducting material and polymer binder in cathode on the electrochemical characteristics were investigated. Our research team succeeded in producing 2.4Ah class zinc air battery for cellular phone application. Its volumetric energy density was 920 wh/l, and gravimetric energy density was 308 wh/kg. The volumetric energy density of our zinc air battery is two times higher than one of lithium secondary battery, and three times higher than that of alkaline manganese battery.

The role of autophagy in the placenta as a regulator of cell death

  • Gong, Jin-Sung;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.97-107
    • /
    • 2014
  • The placenta is a temporary fetomaternal organ capable of supporting fetal growth and development during pregnancy. In particular, abnormal development and dysfunction of the placenta due to cha nges in the proliferation, differentiation, cell death, and invasion of trophoblasts induce several gynecological diseases as well as abnormal fetal development. Autophagy is a catalytic process that maintains cellular structures by recycling building blocks derived from damaged microorganelles or proteins resulting from digestion in lysosomes. Additionally, autophagy is necessary to maintain homeostasis during cellular growth, development, and differentiation, and to protect cells from nutritional deficiencies or factors related to metabolism inhibition. Induced autophagy by various environmental factors has a dual role: it facilitates cellular survival in normal conditions, but the cascade of cellular death is accelerated by over-activated autophagy. Therefore, cellular death by autophagy has been known as programmed cell death type II. Autophagy causes or inhibits cellular death via the other mechanism, apoptosis, which is programmed cell death type I. Recently, it has been reported that autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation, although the mechanisms are still unclear. In particular, abnormal autophagic mechanisms prevent trophoblast invasion and inhibit trophoblast functions. Therefore, the objectives of this review are to examine the characteristics and functions of autophagy and to investigate the role of autophagy in the placenta and the trophoblast as a regulator of cell death.

Integrated Layout Design in Cellular Flexible Assembly Systems (셀형 유연조립시스템에서의 통합 배치설계)

  • 최영호;노인규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.133-149
    • /
    • 1997
  • The major two steps required to design a cellular layout are cell formation and cell layout. Because of the differences between manufacturing and assembly operations, the logic of cell formation and cell layout between an FMS and an FAS is not the same. Since the time for the assembly operations is usualaly relatively short, the transfer time is thus very crucial for the performance of assembly systems. Transfore in a cellular FAS it is more important to eliminate backtracking operations in assembly planning, not to allow intercellular movements in cell formation, and to arrange machines according to assembly sequence in cell layout. This study presents a method for the integrated layout design in cellular FASs considering the characteristics of FAS, layout, and production factors.

  • PDF