• Title/Summary/Keyword: Cell throughput

Search Result 504, Processing Time 0.037 seconds

Studies on Gene Expression of baicalin treated in HL-60 cell line using High-throughput Gene Expression Analysis Techniques (Baicalin을 처리한 HL-60 백혈병 세포주에서 대규모 유전자 분석 발현 연구)

  • Kang Bong Joo;Cha Min Ho;Jeon Byung Hun;Yun Yong Gab;Yoon Yoo Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1291-1300
    • /
    • 2004
  • Baicalin, a biologically active flavonoid form the roots of Scutallaria baicalensis (Skullcap), have been reported to not only function as anti-oxidants but also cause anticancer effect. We investigated the mechanism of baicalin-induced cytotoxicity and the macro scale gene expression analysis in leukemia cell line, HL-60 cells. Baicalin (10 μM) were used to treat the cells for 6h, 12h, 24h, 48h and 72h. In a human cDNAchip study of 65,000 genes evaluated 6, 12, 24, 48. 72 hours after treated with Baicalin in HL-60 cells. Hierarchical cluster against the genes which showed expression changes by more than two fold. One hundred one genes were grouped into 6 clusters according to their profile of expression by a hierarchical clustering algorithm. For genes differentially expressed in response to baicalin treatment, we tested functional classes based on Gene Ontology (GO) terms. This study provides the most comprehensive available survey of gene expression changes in response to baicalin treatment in HL-60 cell line.

A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing

  • Kaku, Ikou;Gong, Jun;Tang, Jiafu;Yin, Yong
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • This paper proposes a mathematical model for converting conveyor assembly line to cellular manufacturing in complex production environments. Complex production environments refer to the situations with multi-products, variant demand, different batch sizes and the worker abilities varying with work stations and products respectively. The model proposed in this paper aims to determine (1) how many cells should be formatted; (2) how many workers should be assigned in each cell; (3) and how many workers should be rested in shortened conveyor line when a conveyor assembly line should be converted, in order to optimize system performances which are defined as the total throughput time and total labor power. We refer the model to a new production system. Such model can be used as an evaluation tool in the cases of (i) when a company wants to change its production system (usually a belt conveyor line) to a new one (including cell manufacturing); (ii) when a company wants to evaluate the performance of its converted system. Simulation experiments based on the data collected from the previous documents are used to estimate the marginal impact that each factor change has had on the estimated performance improvement resulting from the conversion.

Reference Vector Diversity of Subspace Interference Alignment in Multi-cell Multi-user Uplink Systems (부분공간 간섭 정렬을 이용한 다중 셀 상향링크 시스템에서 합용량 향상을 위한 레퍼런스 벡터 다이버서티)

  • Seo, Jong-Pil;Lee, Yoon-Ju;Kwon, Dong-Seung;Lee, Myung-Hoon;Chung, Jae-Hak
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.23-28
    • /
    • 2010
  • We propose a reference vector diversity method in multi-cell multi-user uplink system with the subspace interference alignment to obtain higher sum rate capacity. The proposed method transmits several reference vectors before the data transmission, and selects the best reference vector to maximize the cell sum rate. The proposed method provides higher sum-rate capacity compared with the previous interferenc alignment. Simulation result exhibits the proposed method improves the sum-rate capacity by 60%.

Performance Modeling of STTC-based Dual Virtual Cell System under the Overlay Convergent Networks of Cognitive Networking (중첩 융합 네트워크 환경을 고려한 STTC기반 이중 셀 시스템 분석 모델)

  • Choi, YuMi;Kim, Jeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.20-26
    • /
    • 2012
  • The newly introduced model of a STTC-based Distributed Wireless Communication System (DWCS) can provide the capability of joint control of the signals at multiple cells. This paper has considered the virtual cell systems: the Dual Virtual Cell (DVC), and also proposes DVC employment strategy based on DWCS network. The considered system constructs DVC by using antenna selection method. Also, for multi-user high-rate data transmission, the proposed system introduces multiple antenna technology to get a spatial and temporal diversity gain and exploits space-time trellis codes known as STTC to increase a spectral efficiency.

MSAP NAT Relay Cell for Combat Networks (전투 네트워크를 위한 MSAP NAT Relay Cell)

  • Choi, Ki-Woon;Choi, Young-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.196-205
    • /
    • 2012
  • In this paper, we investigate MSAP-TMFT in TICN systems that will be future NCW-based tactical networks. Although MSAP-TMFT implements the WiBro technology, we propose to design a NRC(NAT Relay Cell) that functions as a relay station and at the same time as a base station in combat environments. NRCs support extension of communication distance, increased data rate, efficient radio resource management, and survavibility of combat networks. From simulation results, we show that NRCs improve the efficacy of radio resource management and system throughput compared to the legacy systems.

An Adaptive Hot-Spot Operating Scheme for OFDMA Downlink Systems in Vertically Overlaid Cellular Architecture

  • Kim, Nak-Myeong;Choi, Hye-Sun;Chung, Hee-Jeong
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.282-290
    • /
    • 2006
  • In vertically overlaid cellular systems, a temporary traffic concentration can occur in a hot-spot area, and this adversely affects overall system capacity. In this paper, we develop an adaptive hot-spot operating scheme (AHOS) to mitigate the negative effects from the nonuniform distribution of user location and the variation in the mixture of QoS requirements in orthogonal frequency division multiple access downlink systems. Here, the base station in a macrocell can control the operation of picocells within the cell, and turns them on or off according to the system overload estimation function. In order to determine whether the set of picocells is turned on or off, we define an AHOS gain index that describes the number of subcarriers saved to the macrocell by turning a specific picocell on. For initiating the picocell OFF procedure, we utilize the changes in traffic concentration and co-channel interference to the neighboring cells. According to computer simulation, the AHOS has been proved to have maximize system throughput while maintaining a very low QoS outage probability under various system scenarios in both a single-cell and multi-cell environments.

  • PDF

Effect of Preparation Condition of Precursor Thin Films on the Properties of CZTS Solar Cells

  • Seong, Si-Jun;Park, Si-Nae;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.1-318.1
    • /
    • 2013
  • Nowadays Cu2ZnSnS4 (CZTS) solar cell is attracting a lot of attention as a strong alternative to CIGS solar cell due to nontoxic and inexpensive constituent elements of CZTS. From various processes for the fabrication of CZTS solar cell, solution-based deposition of CZTS thin films is well-known non-vacuum process and many researchers are focusing on this method because of large-area deposition, high-throughput, and efficient material usage. Typically the solution-based process consists of two steps, coating of precursor solution and annealing of the precursor thin films. Unlike vacuum-based deposition, precursor solution contains unnecessary elements except Cu, Zn, Sn, and S in order to form high quality precursor thin films, and thus the precise control of precursor thin film preparation is essential for achieving high efficient CZTS solar cells. In this work, we have investigated the effect of preparation condition of CZTS precursor thin films on the performance of CZTS solar cells. The composition of CZTS precursor solution was controlled for obtaining optimized chemical composition of CZTS absorber layers for high-efficiency solar cells. Pre-annealing process of the CZTS precursor thin films was also investigated to confirm the effect of thermal treatment on chemical composition and carbon residues of CZTS absorber layers. The change of the morphology of CZTS precursor thin film by the preparation condition was also observed.

  • PDF

Inertial Microfluidics-Based Cell Sorting

  • Kim, Ga-Yeong;Han, Jong-In;Park, Je-Kyun
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.257-267
    • /
    • 2018
  • Inertial microfluidics has attracted significant attention in recent years due to its superior benefits of high throughput, precise control, simplicity, and low cost. Many inertial microfluidic applications have been demonstrated for physiological sample processing, clinical diagnostics, and environmental monitoring and cleanup. In this review, we discuss the fundamental mechanisms and principles of inertial migration and Dean flow, which are the basis of inertial microfluidics, and provide basic scaling laws for designing the inertial microfluidic devices. This will allow end-users with diverse backgrounds to more easily take advantage of the inertial microfluidic technologies in a wide range of applications. A variety of recent applications are also classified according to the structure of the microchannel: straight channels and curved channels. Finally, several future perspectives of employing fluid inertia in microfluidic-based cell sorting are discussed. Inertial microfluidics is still expected to be promising in the near future with more novel designs using various shapes of cross section, sheath flows with different viscosities, or technologies that target micron and submicron bioparticles.

Deep sequencing of B cell receptor repertoire

  • Kim, Daeun;Park, Daechan
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.540-547
    • /
    • 2019
  • Immune repertoire is a collection of enormously diverse adaptive immune cells within an individual. As the repertoire shapes and represents immunological conditions, identification of clones and characterization of diversity are critical for understanding how to protect ourselves against various illness such as infectious diseases and cancers. Over the past several years, fast growing technologies for high throughput sequencing have facilitated rapid advancement of repertoire research, enabling us to observe the diversity of repertoire at an unprecedented level. Here, we focus on B cell receptor (BCR) repertoire and review approaches to B cell isolation and sequencing library construction. These experiments should be carefully designed according to BCR regions to be interrogated, such as heavy chain full length, complementarity determining regions, and isotypes. We also highlight preprocessing steps to remove sequencing and PCR errors with unique molecular index and bioinformatics techniques. Due to the nature of massive sequence variation in BCR, caution is warranted when interpreting repertoire diversity from error-prone sequencing data. Furthermore, we provide a summary of statistical frameworks and bioinformatics tools for clonal evolution and diversity. Finally, we discuss limitations of current BCR-seq technologies and future perspectives on advances in repertoire sequencing.

A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis

  • Ahn, Da-Hee;Park, Han-Gyu;Song, Won-Suk;Kim, Seong-Min;Jo, Sung-Hyun;Yang, Yung-Hun;Kim, Yun-Gon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.69-77
    • /
    • 2019
  • Screening microorganisms that can produce glucan hydrolases for industrial, environmental, and biomedical applications is important. Herein, we describe a novel approach to perform glucan hydrolase screening-based on analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra-which involves degradation of the oligo- and polysaccharides. As a proof-of-concept study, glucan hydrolases that could break down glucans made of several glucose units were used to demonstrate the MALDI-MS-based enzyme assay. First, the enzyme activities of ${\alpha}$-amylase and cellulase on a mixture of glucan oligosaccharides were successfully discriminated, where changes of the MALDI-MS profiles directly reflected the glucan hydrolase activities. Next, we validated that this MALDI-MS-based enzyme assay could be applied to glucan polysaccharides (i.e., pullulan, lichenan, and schizophyllan). Finally, the bacterial glucan hydrolase activities were screened on 96-well plate-based platforms, using cell lysates or samples of secreted enzyme. Our results demonstrated that the MALDI-MS-based enzyme assay system would be useful for investigating bacterial glucoside hydrolases in a high-throughput manner.