Browse > Article
http://dx.doi.org/10.4014/mbl.1810.10012

A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis  

Ahn, Da-Hee (Department of Chemical Engineering, Soongsil University)
Park, Han-Gyu (Department of Chemical Engineering, Soongsil University)
Song, Won-Suk (School of Chemical and Biological Engineering, Seoul National University)
Kim, Seong-Min (Department of Chemical Engineering, Soongsil University)
Jo, Sung-Hyun (Department of Chemical Engineering, Soongsil University)
Yang, Yung-Hun (Department of Biological Engineering, Konkuk University)
Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.1, 2019 , pp. 69-77 More about this Journal
Abstract
Screening microorganisms that can produce glucan hydrolases for industrial, environmental, and biomedical applications is important. Herein, we describe a novel approach to perform glucan hydrolase screening-based on analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra-which involves degradation of the oligo- and polysaccharides. As a proof-of-concept study, glucan hydrolases that could break down glucans made of several glucose units were used to demonstrate the MALDI-MS-based enzyme assay. First, the enzyme activities of ${\alpha}$-amylase and cellulase on a mixture of glucan oligosaccharides were successfully discriminated, where changes of the MALDI-MS profiles directly reflected the glucan hydrolase activities. Next, we validated that this MALDI-MS-based enzyme assay could be applied to glucan polysaccharides (i.e., pullulan, lichenan, and schizophyllan). Finally, the bacterial glucan hydrolase activities were screened on 96-well plate-based platforms, using cell lysates or samples of secreted enzyme. Our results demonstrated that the MALDI-MS-based enzyme assay system would be useful for investigating bacterial glucoside hydrolases in a high-throughput manner.
Keywords
Glucan hydrolase; glucan; oligosaccharides; polysaccharides; MALDI-MS; whole-cell biocatalysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wahler D, Reymond J-L. 2001. Novel methods for biocatalyst screening. Curr. Opin. Chem. Biol. 5: 152-158.   DOI
2 de Rond T, Danielewicz M, Northen T. 2015. High throughput screening of enzyme activity with mass spectrometry imaging. Curr. Opin. Biotechnol. 31: 1-9.   DOI
3 Pi N, Armstrong JI, Bertozzi CR, Leary JA. 2002. Kinetic analysis of NodST sulfotransferase using an electrospray ionization mass spectrometry assay. Biochemistry. 41: 13283-13288.   DOI
4 Yu Y, Mizanur RM, Pohl NL. 2008. Glycosidase activity profiling for bacterial identification by a chemical proteomics approach. Biocatal. Biotransformation 26: 25-31.   DOI
5 Greis KD. 2007. Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom. Rev. 26: 324-339.   DOI
6 Kiran GS, Lipton AN, Kennedy J, Dobson AD, Selvin J. 2014. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered 5: 305-318.   DOI
7 Mirande C, Canard I, Blanche SBC, Charrier J-P, Van Belkum A, Welker M, et al. 2015. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 34: 2225-2234.   DOI
8 Weiskopf AS, Vouros P, Harvey DJ. 1997. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom. 11: 1493-1504.   DOI
9 Cocuron J-C, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, et al. 2007. A gene from the cellulose synthase-like C family encodes a ${\beta}$-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA 104: 8550-8555.   DOI
10 Wahler D, Reymond J-L. 2001. High-throughput screening for biocatalysts. Curr. Opin Biotechnol. 12: 535-544.   DOI
11 Allgaier M, Reddy A, Park JI, Ivanova N, D'haeseleer P, Lowry S, et al. 2010. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLos One. 5: e8812.   DOI
12 Oh J, Lee J, Baek S, Jo Y, Kim H. 2018. Characterization of three extracellular ${\beta}$-glucosidases produced by a fungal isolate Aspergillus sp. YDJ14 and their hydrolyzing activity for a flavone glycoside. J. Microbiol. Biotechnol. 28: 757-764.   DOI
13 Fliegmann J, Mithofer A, Wanner G, Ebel J. 2004. An ancient enzyme domain hidden in the putative ${\beta}$-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279: 1132-1140.   DOI
14 Harris PV, Welner D, McFarland K, Re E, Navarro Poulsen J-C, Brown K, et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49: 3305-3316.   DOI
15 Turner C, Turner P, Jacobson G, Almgren K, Waldeback M, Sjoberg P, et al. 2006. Subcritical water extraction and ${\beta}$-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chem. 8: 949-959.   DOI
16 Jiang G, Vasanthan T. 2000. MALDI-MS and HPLC quantification of oligosaccharides of lichenase-hydrolyzed water-soluble ${\beta}$-glucan from ten barley varieties. J. Agric. Food Chem. 48: 3305-3310.   DOI
17 Maitan-Alfenas GP, Visser EM, Guimaraes VM. 2015. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr. Opin. Food Sci. 1: 44-49.   DOI
18 Creaser CS, Reynolds JC, Harvey DJ. 2002. Structural analysis of oligosaccharides by atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 16: 176-184.   DOI
19 Lopez-Garcia M, Garcia MSD, Vilarino JML, Rodriguez MVG. 2016. MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species. Food Chem. 199: 597-604.   DOI
20 Bungert D, Bastian S, Heckmann-Pohl DM, Giffhorn F, Heinzle E, Tholey A. 2004. Screening of sugar converting enzymes using quantitative MALDI-ToF mass spectrometry. Biotechnol. Lett. 26: 1025-1030.   DOI
21 de Carvalho CC. 2011. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol. Adv. 29: 75-83.   DOI
22 Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules. 4: 117-139.   DOI
23 Li Y, Ku S, Park MS, Li Z, Ji GE. 2017. Acceleration of aglycone isoflavone and ${\gamma}$-aminobutyric acid production from doenjang using whole-cell biocatalysis accompanied by protease treatment. J. Microbiol. Biotechnol. 27: 1952-1960.   DOI
24 Yang M, Galizzi A, Henner D. 1983. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucl. Acids Res. 11: 237-250.   DOI
25 Hatfield RD, Nevins DJ. 1987. Hydrolytic activity and substrate specificity of an endoglucanase from Zea mays seedling cell walls. Plant Physiol. 83: 203-207.   DOI
26 Cherry JR, Fidantsef AL. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438-443.   DOI
27 Amraini SZ, Ariyani LP, Hermansyah H, Setyahadi S, Rahman SF, Park D-H, et al. 2017. Production and characterization of cellulase from E. coli EgRK2 recombinant based oil palm empty fruit bunch. Biotechnol. Bioprocess Eng. 22: 287-295.   DOI
28 Taylor LE, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S-Y, et al. 2008. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol. 26: 413-424.   DOI
29 Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y. 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2: 185-190.   DOI
30 Dodd D, Cann IK. 2009. Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol. Bioenergy. 1: 2-17.   DOI
31 Goddard JP, Reymond JL. 2004. Enzyme assays for high-throughput screening. Curr Opin. Biotechnol. 15: 314-322.   DOI
32 Reymond JL, Fluxa VS, Maillard N. 2009. Enzyme assays. Chem. Commun. (Camb). 1: 34-46.
33 Goddard JP, Reymond JL. 2004. Recent advances in enzyme assays. Trends Biotechnol. 22: 363-370.   DOI
34 Xia W, Rininsland F, Wittenburg SK, Shi X, Achyuthan KE, McBranch DW, et al. 2004. Applications of fluorescent polymer superquenching to high throughput screening assays for protein kinases. Assay Drug Dev. Technol. 2: 183-192.   DOI
35 Beisson F, Ferte N, Nari J, Noat G, Arondel V, Verger R. 1999. Use of naturally fluorescent triacylglycerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. J. Lipid Res. 40: 2313-2321.   DOI
36 Park Y, Yun H. 1999. Cloning of the Escherichia coli endo-1, 4-Dglucanase gene and identification of its product. Mol. Gen. Genet. 261: 236-241.   DOI
37 Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, et al. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91.   DOI
38 Perna NT, Plunkett III G, Burland V, Mau B, Glasner JD, Rose DJ, et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 409: 529-533.   DOI
39 Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462.   DOI
40 McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852-856.   DOI
41 Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R, Wehnes C, et al. 2013. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol. Evol. 5: 2109-2123.   DOI
42 Portmann A-C, Fournier C, Gimonet J, Ngom-Bru C, Barretto C, Baert L. 2018. A validation approach of an end-to-end whole genome sequencing workflow for source tracking of Listeria monocytogenes and Salmonella enterica. Front Microbiol. 9: 446-458.   DOI