Browse > Article
http://dx.doi.org/10.1007/s13206-018-2401-2

Inertial Microfluidics-Based Cell Sorting  

Kim, Ga-Yeong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Han, Jong-In (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Park, Je-Kyun (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
BioChip Journal / v.12, no.4, 2018 , pp. 257-267 More about this Journal
Abstract
Inertial microfluidics has attracted significant attention in recent years due to its superior benefits of high throughput, precise control, simplicity, and low cost. Many inertial microfluidic applications have been demonstrated for physiological sample processing, clinical diagnostics, and environmental monitoring and cleanup. In this review, we discuss the fundamental mechanisms and principles of inertial migration and Dean flow, which are the basis of inertial microfluidics, and provide basic scaling laws for designing the inertial microfluidic devices. This will allow end-users with diverse backgrounds to more easily take advantage of the inertial microfluidic technologies in a wide range of applications. A variety of recent applications are also classified according to the structure of the microchannel: straight channels and curved channels. Finally, several future perspectives of employing fluid inertia in microfluidic-based cell sorting are discussed. Inertial microfluidics is still expected to be promising in the near future with more novel designs using various shapes of cross section, sheath flows with different viscosities, or technologies that target micron and submicron bioparticles.
Keywords
Cell sorting; Dean flow; Inertial microfluidics; Inertial migration; Spiral channel; Straight channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin, S.-C., Yen, P.-W., Peng, C.-C. & Tung, Y.-C. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab Chip 12, 3135-3141 (2012).   DOI
2 Shi, J., Huang, H., Stratton, Z, Huang, Y. & Huang, T.J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354-3359 (2009).   DOI
3 Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U.S.A. 112, 4970-4975 (2015).   DOI
4 Urbansky, A. et al. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep. 7, 17161 (2017).   DOI
5 Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U.S.A. 104, 18892-18897 (2007).   DOI
6 Wang, X. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11, 3656-3662 (2011).   DOI
7 Landenberger, B., Hofemann, H., Wadle, S. & Rohrbach, A. Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12, 3177-3183 (2012).   DOI
8 Yamada, M., Nakashima, M. & Seki, M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 76, 5465-5471 (2004).   DOI
9 Ashley, J.F., Bowman, C.N. & Davis, R.H. Hydrodynamic separation of particles using pinched-flow fractionation. AIChE J. 59, 3444-3457 (2013). https://doi.org/10.1002/aic.14087   DOI
10 Huang, L.R., Cox, E.C., Austin, R.H. & Sturm, J.C. Continuous particle separation through deterministic lateral displacement. Science 304, 987-990 (2004).   DOI
11 McGrath, J., Jimenez, M. & Bridle, H. Deterministic lateral displacement for particle separation: a review. Lab Chip 14, 4139-4158 (2014).   DOI
12 Tran, T.S.H., Ho, B.D., Beech, J.P. & Tegenfeldt, J.O. Open channel deterministic lateral displacement for particle and cell sorting. Lab Chip 17, 3592-3600 (2017).   DOI
13 Choi, S. & Park, J.-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7, 890-897 (2007).   DOI
14 Choi, S., Song, S., Choi, C. & Park, J.-K. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal. Chem. 81, 50-55 (2009).   DOI
15 Kim, B., Lee, J.K. & Choi, S. Continuous sorting and washing of cancer cells from blood cells by hydrophoresis. BioChip J. 10, 81-87 (2016). https://doi.org/10.1007/s13206-016-0201-0   DOI
16 Di Carlo, D. Inertial microfluidics. Lab Chip 9, 3038-3046 (2009).   DOI
17 Park, J.-S. & Jung, H.-I. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal. Chem. 81, 8280-8288 (2009).   DOI
18 Segre, G. & Silberberg, A. Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209-210 (1961). https://doi.org/10.1038/189209a0   DOI
19 Segre, G. & Silberberg, A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136-157 (1962). https://doi.org/10.1017/S0022112062001111   DOI
20 Mach. A.J. & Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107, 302-311 (2010).   DOI
21 Li, M., van Zee, M., Goda, K. & Di Carlo, D. Size-based sorting of hydrogel droplets using inertial microfluidics. Lab Chip 18, 2575-2582 (2018).   DOI
22 Zhou, J., Giridhar, P.V., Kasper, S. & Papautsky, I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13, 1919-1929 (2013).   DOI
23 Tan, A.P. et al. Continuous-flow cytomorphological staining and analysis. Lab Chip 14, 522-531 (2014).   DOI
24 Dudani, J.S., Go, D.E., Gossett, D.R., Tan, A.P. & Di Carlo, D. Mediating millisecond reaction time around particles and cells. Anal. Chem. 86, 1502-1510 (2014).   DOI
25 Dudani, J.S. et al. Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics 9, 014112 (2015).   DOI
26 Shen, S. et al. Regulating secondary flow in ultra-low aspect ratio microchannels by dimensional confinement. Adv. Theory Simul. 1, 1700034 (2018). https://doi.org/10.1002/adts.201700034   DOI
27 Bhagat, A.A.S., Kuntaegowdanahalli, S.S., Kaval, N., Seliskar, C.J. & Papautsky, I. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12, 187-195 (2010).   DOI
28 Lee, M.G. et al. Inertial blood plasma separation in a contraction-expansion array microchannel. Appl. Phys. Lett. 98, 253702 (2011). https://doi.org/10.1063/1.3601745   DOI
29 Lee, M.G., Shin, J.H., Bae, C.Y., Choi, S. & Park, J.-K. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress, Anal. Chem. 85, 6213-6218 (2013).   DOI
30 Warkiani, M.E. et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14, 128-137 (2014).   DOI
31 Lee, W. et al. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 5, 7717 (2015).   DOI
32 Choi, J., Hong, S.C., Kim, W. & Jung, J.H. Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria. ACS Sensors 2, 513-521 (2017).   DOI
33 Kim, J. et al. Size-dependent inertial focusing position shift and particle separations in triangular microchannels. Anal. Chem. 90, 1827-1835 (2018).   DOI
34 Xu, W., Hou, Z., Liu, Z. & Wu, Z. Viscosity-difference-induced asymmetric selective focusing for large stroke particle separation. Microfluid. Nanofluid. 20, 128 (2016).   DOI
35 Lee, D. et al. Active control of inertial focusing positions and particle separations enabled by velocity profile tuning with coflow systems. Anal. Chem. 90, 2902-2911 (2018).   DOI
36 Wang, L. & Dandy, D.S. High-throughput inertial focusing of micrometer- and sub-micrometer-sized particles separation. Adv. Sci. 4, 1700153 (2017).   DOI
37 Bhagat, A.A.S., Kuntaegowdanahalli, S.S. & Papautsky, I. Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys. Fluids 20, 101702 (2008). https://doi.org/10.1063/1.2998844   DOI
38 Zhang, J., Li, W. & Alici, G. Inertial microfluidics: mechanisms and applications. In D. Zhang & B. Wei (Eds.), Advanced Mechatronics and MEMS Devices II, 563-593 (2017).
39 Amini, H., Lee, W. & Di Carlo, D. Inertial microfluidic physics. Lab Chip 14, 2739-2761 (2014).   DOI
40 Hou, H.W. et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013).   DOI
41 Lee, M.G., Choi, S. & Park, J.-K. Inertial separation in a contractio-expansion array microchannel. J. Chromatogr. A 1218, 4138-4143 (2011).   DOI
42 Choi, K. et al. Negative selection by spiral inertial microfluidics improves viral recovery and sequencing from blood. Anal. Chem. 90, 4657-4662 (2018).   DOI
43 Lee, M.G., Shin, J.H., Choi, S. & Park, J.-K. Enhanced blood plasma separation by modulation of inertial lift force. Sens. Actuators B Chem. 190, 311-317 (2014). https://doi.org/10.1016/j.snb.2013.08.092   DOI
44 Kuntaegowdanahalli, S.S., Bhagat, A.A.S., Kumar, G. & Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9, 2973-2980 (2009).   DOI
45 Mach, A.J., Adeyiga, O.B. & Di Carlo, D. Microfluidic sample preparation for diagnostic cytopathology. Lab Chip 13, 1011-1026 (2013).   DOI
46 Li, X., Chen, W., Liu, G., Lu, W. & Fu, J. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14, 2565-2575 (2014).   DOI
47 Tripathi, S., Kumar, Y.V.B., Agrawal, A., Prabhakar, A. & Joshi, S.S. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects. Sci. Rep. 6, 26749 (2016).   DOI
48 Myung, J.H. & Hong, S. Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip 15, 4500-4511 (2015).   DOI
49 Godino, N., Jorde, F., Lawlor, D., Jaeger, M. & Duschl, C. Purification of microalgae from bacterial contamination using a disposable inertia-based microfluidic device. J. Micromech. Microeng. 25, 084002 (2015). http://dx.doi.org/10.1088/0960-1317/25/8/084002   DOI
50 Zhang, J. et al. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16, 10-34 (2016).   DOI
51 Yu, Z.T.F., Yong, K.M.A. & Fu, J. Microfluidic blood cell sorting: now and beyond. Small 10, 1687-1703 (2014).   DOI
52 Wyatt Shields IV, C., Reyes, C. & Lopez, G.P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15, 1230-1249 (2015).   DOI
53 Antfolk, M. & Laurell, T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood-a review. Anal. Chim. Acta 965, 9-35 (2017).   DOI
54 Wu, J., Chen, Q. & Lin, J.-M. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142, 421-441 (2017).   DOI
55 Mao, X., Lin, S.-C.S., Dong, C. & Huang, T.J. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9, 1583-1589 (2009).   DOI
56 Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644-1659 (2007).   DOI
57 Yeo, T. et al. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016).   DOI
58 Doh, I. & Cho, Y.-H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens. Actuators A Phys. 121, 59-65 (2005). https://doi.org/10.1016/j.sna.2005.01.030   DOI
59 Cetin, B. & Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis 32, 2410-2427 (2011).   DOI
60 Robert, D. et al. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11, 1902-1910 (2011).   DOI
61 Shen, F., Hwang, H., Hahn, Y.K. & Park, J.-K. Label-free cell separation using a tunable magnetophoretic repulsion force. Anal. Chem. 84, 3075-3081 (2012).   DOI
62 Cruz, J. et al. High pressure inertial focusing for separating and concentrating bacteria at high throughput. J. Micromech. Microeng. 27, 084001 (2017).   DOI
63 Mutlu, B.R., Edd, J.F. & Toner, M. Oscillatory inertial focusing in infinite microchannels. Proc. Natl. Acad. Sci. U.S.A. 115, 7682-7687 (2018).   DOI