DOI QR코드

DOI QR Code

Inertial Microfluidics-Based Cell Sorting

  • Kim, Ga-Yeong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Han, Jong-In (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Je-Kyun (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2018.09.17
  • Accepted : 2018.11.22
  • Published : 2018.12.20

Abstract

Inertial microfluidics has attracted significant attention in recent years due to its superior benefits of high throughput, precise control, simplicity, and low cost. Many inertial microfluidic applications have been demonstrated for physiological sample processing, clinical diagnostics, and environmental monitoring and cleanup. In this review, we discuss the fundamental mechanisms and principles of inertial migration and Dean flow, which are the basis of inertial microfluidics, and provide basic scaling laws for designing the inertial microfluidic devices. This will allow end-users with diverse backgrounds to more easily take advantage of the inertial microfluidic technologies in a wide range of applications. A variety of recent applications are also classified according to the structure of the microchannel: straight channels and curved channels. Finally, several future perspectives of employing fluid inertia in microfluidic-based cell sorting are discussed. Inertial microfluidics is still expected to be promising in the near future with more novel designs using various shapes of cross section, sheath flows with different viscosities, or technologies that target micron and submicron bioparticles.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Yu, Z.T.F., Yong, K.M.A. & Fu, J. Microfluidic blood cell sorting: now and beyond. Small 10, 1687-1703 (2014). https://doi.org/10.1002/smll.201302907
  2. Wyatt Shields IV, C., Reyes, C. & Lopez, G.P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15, 1230-1249 (2015). https://doi.org/10.1039/C4LC01246A
  3. Antfolk, M. & Laurell, T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood-a review. Anal. Chim. Acta 965, 9-35 (2017). https://doi.org/10.1016/j.aca.2017.02.017
  4. Wu, J., Chen, Q. & Lin, J.-M. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142, 421-441 (2017). https://doi.org/10.1039/C6AN01939K
  5. Mao, X., Lin, S.-C.S., Dong, C. & Huang, T.J. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9, 1583-1589 (2009). https://doi.org/10.1039/b820138b
  6. Lin, S.-C., Yen, P.-W., Peng, C.-C. & Tung, Y.-C. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab Chip 12, 3135-3141 (2012). https://doi.org/10.1039/c2lc40246g
  7. Mach, A.J., Adeyiga, O.B. & Di Carlo, D. Microfluidic sample preparation for diagnostic cytopathology. Lab Chip 13, 1011-1026 (2013). https://doi.org/10.1039/c2lc41104k
  8. Li, X., Chen, W., Liu, G., Lu, W. & Fu, J. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14, 2565-2575 (2014). https://doi.org/10.1039/C4LC00350K
  9. Tripathi, S., Kumar, Y.V.B., Agrawal, A., Prabhakar, A. & Joshi, S.S. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects. Sci. Rep. 6, 26749 (2016). https://doi.org/10.1038/srep26749
  10. Myung, J.H. & Hong, S. Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip 15, 4500-4511 (2015). https://doi.org/10.1039/C5LC00947B
  11. Yeo, T. et al. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016). https://doi.org/10.1038/srep22076
  12. Doh, I. & Cho, Y.-H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens. Actuators A Phys. 121, 59-65 (2005). https://doi.org/10.1016/j.sna.2005.01.030
  13. Cetin, B. & Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis 32, 2410-2427 (2011). https://doi.org/10.1002/elps.201100167
  14. Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644-1659 (2007). https://doi.org/10.1039/b712784g
  15. Robert, D. et al. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11, 1902-1910 (2011). https://doi.org/10.1039/c0lc00656d
  16. Shen, F., Hwang, H., Hahn, Y.K. & Park, J.-K. Label-free cell separation using a tunable magnetophoretic repulsion force. Anal. Chem. 84, 3075-3081 (2012). https://doi.org/10.1021/ac201505j
  17. Shi, J., Huang, H., Stratton, Z, Huang, Y. & Huang, T.J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354-3359 (2009). https://doi.org/10.1039/b915113c
  18. Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U.S.A. 112, 4970-4975 (2015). https://doi.org/10.1073/pnas.1504484112
  19. Urbansky, A. et al. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep. 7, 17161 (2017). https://doi.org/10.1038/s41598-017-17200-9
  20. Wang, X. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11, 3656-3662 (2011). https://doi.org/10.1039/c1lc20653b
  21. Landenberger, B., Hofemann, H., Wadle, S. & Rohrbach, A. Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12, 3177-3183 (2012). https://doi.org/10.1039/c2lc21099a
  22. Yamada, M., Nakashima, M. & Seki, M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 76, 5465-5471 (2004). https://doi.org/10.1021/ac049863r
  23. Ashley, J.F., Bowman, C.N. & Davis, R.H. Hydrodynamic separation of particles using pinched-flow fractionation. AIChE J. 59, 3444-3457 (2013). https://doi.org/10.1002/aic.14087
  24. Huang, L.R., Cox, E.C., Austin, R.H. & Sturm, J.C. Continuous particle separation through deterministic lateral displacement. Science 304, 987-990 (2004). https://doi.org/10.1126/science.1094567
  25. McGrath, J., Jimenez, M. & Bridle, H. Deterministic lateral displacement for particle separation: a review. Lab Chip 14, 4139-4158 (2014). https://doi.org/10.1039/C4LC00939H
  26. Tran, T.S.H., Ho, B.D., Beech, J.P. & Tegenfeldt, J.O. Open channel deterministic lateral displacement for particle and cell sorting. Lab Chip 17, 3592-3600 (2017). https://doi.org/10.1039/C7LC00707H
  27. Choi, S. & Park, J.-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7, 890-897 (2007). https://doi.org/10.1039/b701227f
  28. Choi, S., Song, S., Choi, C. & Park, J.-K. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal. Chem. 81, 50-55 (2009). https://doi.org/10.1021/ac801720x
  29. Kim, B., Lee, J.K. & Choi, S. Continuous sorting and washing of cancer cells from blood cells by hydrophoresis. BioChip J. 10, 81-87 (2016). https://doi.org/10.1007/s13206-016-0201-0
  30. Di Carlo, D. Inertial microfluidics. Lab Chip 9, 3038-3046 (2009). https://doi.org/10.1039/b912547g
  31. Zhang, J. et al. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16, 10-34 (2016). https://doi.org/10.1039/C5LC01159K
  32. Godino, N., Jorde, F., Lawlor, D., Jaeger, M. & Duschl, C. Purification of microalgae from bacterial contamination using a disposable inertia-based microfluidic device. J. Micromech. Microeng. 25, 084002 (2015). http://dx.doi.org/10.1088/0960-1317/25/8/084002
  33. Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U.S.A. 104, 18892-18897 (2007). https://doi.org/10.1073/pnas.0704958104
  34. Bhagat, A.A.S., Kuntaegowdanahalli, S.S. & Papautsky, I. Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys. Fluids 20, 101702 (2008). https://doi.org/10.1063/1.2998844
  35. Amini, H., Lee, W. & Di Carlo, D. Inertial microfluidic physics. Lab Chip 14, 2739-2761 (2014). https://doi.org/10.1039/c4lc00128a
  36. Lee, M.G., Choi, S. & Park, J.-K. Inertial separation in a contractio-expansion array microchannel. J. Chromatogr. A 1218, 4138-4143 (2011). https://doi.org/10.1016/j.chroma.2010.11.081
  37. Choi, K. et al. Negative selection by spiral inertial microfluidics improves viral recovery and sequencing from blood. Anal. Chem. 90, 4657-4662 (2018). https://doi.org/10.1021/acs.analchem.7b05200
  38. Park, J.-S. & Jung, H.-I. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal. Chem. 81, 8280-8288 (2009). https://doi.org/10.1021/ac9005765
  39. Segre, G. & Silberberg, A. Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209-210 (1961). https://doi.org/10.1038/189209a0
  40. Segre, G. & Silberberg, A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136-157 (1962). https://doi.org/10.1017/S0022112062001111
  41. Mach. A.J. & Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107, 302-311 (2010). https://doi.org/10.1002/bit.22833
  42. Li, M., van Zee, M., Goda, K. & Di Carlo, D. Size-based sorting of hydrogel droplets using inertial microfluidics. Lab Chip 18, 2575-2582 (2018). https://doi.org/10.1039/C8LC00568K
  43. Zhou, J., Giridhar, P.V., Kasper, S. & Papautsky, I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13, 1919-1929 (2013). https://doi.org/10.1039/c3lc50101a
  44. Tan, A.P. et al. Continuous-flow cytomorphological staining and analysis. Lab Chip 14, 522-531 (2014). https://doi.org/10.1039/C3LC50870F
  45. Dudani, J.S., Go, D.E., Gossett, D.R., Tan, A.P. & Di Carlo, D. Mediating millisecond reaction time around particles and cells. Anal. Chem. 86, 1502-1510 (2014). https://doi.org/10.1021/ac402920m
  46. Dudani, J.S. et al. Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics 9, 014112 (2015). https://doi.org/10.1063/1.4907807
  47. Shen, S. et al. Regulating secondary flow in ultra-low aspect ratio microchannels by dimensional confinement. Adv. Theory Simul. 1, 1700034 (2018). https://doi.org/10.1002/adts.201700034
  48. Bhagat, A.A.S., Kuntaegowdanahalli, S.S., Kaval, N., Seliskar, C.J. & Papautsky, I. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12, 187-195 (2010). https://doi.org/10.1007/s10544-009-9374-9
  49. Lee, M.G. et al. Inertial blood plasma separation in a contraction-expansion array microchannel. Appl. Phys. Lett. 98, 253702 (2011). https://doi.org/10.1063/1.3601745
  50. Lee, M.G., Shin, J.H., Bae, C.Y., Choi, S. & Park, J.-K. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress, Anal. Chem. 85, 6213-6218 (2013). https://doi.org/10.1021/ac4006149
  51. Lee, M.G., Shin, J.H., Choi, S. & Park, J.-K. Enhanced blood plasma separation by modulation of inertial lift force. Sens. Actuators B Chem. 190, 311-317 (2014). https://doi.org/10.1016/j.snb.2013.08.092
  52. Kuntaegowdanahalli, S.S., Bhagat, A.A.S., Kumar, G. & Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9, 2973-2980 (2009). https://doi.org/10.1039/b908271a
  53. Zhang, J., Li, W. & Alici, G. Inertial microfluidics: mechanisms and applications. In D. Zhang & B. Wei (Eds.), Advanced Mechatronics and MEMS Devices II, 563-593 (2017).
  54. Hou, H.W. et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013). https://doi.org/10.1038/srep01259
  55. Warkiani, M.E. et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14, 128-137 (2014). https://doi.org/10.1039/C3LC50617G
  56. Lee, W. et al. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 5, 7717 (2015). https://doi.org/10.1038/srep07717
  57. Choi, J., Hong, S.C., Kim, W. & Jung, J.H. Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria. ACS Sensors 2, 513-521 (2017). https://doi.org/10.1021/acssensors.6b00753
  58. Kim, J. et al. Size-dependent inertial focusing position shift and particle separations in triangular microchannels. Anal. Chem. 90, 1827-1835 (2018). https://doi.org/10.1021/acs.analchem.7b03851
  59. Xu, W., Hou, Z., Liu, Z. & Wu, Z. Viscosity-difference-induced asymmetric selective focusing for large stroke particle separation. Microfluid. Nanofluid. 20, 128 (2016). https://doi.org/10.1007/s10404-016-1791-5
  60. Lee, D. et al. Active control of inertial focusing positions and particle separations enabled by velocity profile tuning with coflow systems. Anal. Chem. 90, 2902-2911 (2018). https://doi.org/10.1021/acs.analchem.7b05143
  61. Wang, L. & Dandy, D.S. High-throughput inertial focusing of micrometer- and sub-micrometer-sized particles separation. Adv. Sci. 4, 1700153 (2017). https://doi.org/10.1002/advs.201700153
  62. Cruz, J. et al. High pressure inertial focusing for separating and concentrating bacteria at high throughput. J. Micromech. Microeng. 27, 084001 (2017). https://doi.org/10.1088/1361-6439/aa6b14
  63. Mutlu, B.R., Edd, J.F. & Toner, M. Oscillatory inertial focusing in infinite microchannels. Proc. Natl. Acad. Sci. U.S.A. 115, 7682-7687 (2018). https://doi.org/10.1073/pnas.1721420115

Cited by

  1. A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow vol.13, pp.1, 2018, https://doi.org/10.1007/s13206-019-3110-1
  2. Hydroporator: a hydrodynamic cell membrane perforator for high-throughput vector-free nanomaterial intracellular delivery and DNA origami biostability evaluation vol.19, pp.10, 2018, https://doi.org/10.1039/c9lc00041k
  3. Investigation of Leukocyte Viability and Damage in Spiral Microchannel and Contraction-Expansion Array vol.10, pp.11, 2018, https://doi.org/10.3390/mi10110772
  4. On‐Chip Generation of Vortical Flows for Microfluidic Centrifugation vol.16, pp.9, 2018, https://doi.org/10.1002/smll.201903605
  5. Hydrophoresis - A Microfluidic Principle for Directed Particle Migration in Flow vol.14, pp.1, 2018, https://doi.org/10.1007/s13206-020-4107-5
  6. Inertial focusing in triangular microchannels with various apex angles vol.14, pp.2, 2018, https://doi.org/10.1063/1.5133640
  7. Intracellular Nanomaterial Delivery via Spiral Hydroporation vol.14, pp.3, 2020, https://doi.org/10.1021/acsnano.9b07930
  8. Channel innovations for inertial microfluidics vol.20, pp.19, 2018, https://doi.org/10.1039/d0lc00714e
  9. Inertial microfluidics: Recent advances vol.41, pp.24, 2018, https://doi.org/10.1002/elps.202000134
  10. Enhanced Molecular Diagnosis of Bloodstream Candida Infection with Size-Based Inertial Sorting at Submicron Resolution vol.92, pp.23, 2020, https://doi.org/10.1021/acs.analchem.0c03718
  11. Advances in continuous-flow based microfluidic PCR devices-a review vol.2, pp.4, 2018, https://doi.org/10.1088/2631-8695/abd287
  12. Label‐Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics vol.17, pp.8, 2018, https://doi.org/10.1002/smll.202006176
  13. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles vol.7, pp.6, 2021, https://doi.org/10.1021/acsbiomaterials.1c00083
  14. The Lattice-Boltzmann Modeling of Microflows in a Cell Culture Microdevice for High-Throughput Drug Screening vol.11, pp.19, 2018, https://doi.org/10.3390/app11199140
  15. Label-Free Isolation of Exosomes Using Microfluidic Technologies vol.15, pp.11, 2018, https://doi.org/10.1021/acsnano.1c03469
  16. A microfluidic chip integrated with 3D sidewall electrodes and wavy microchannel for cell focusing and separation vol.31, pp.12, 2018, https://doi.org/10.1088/1361-6439/ac333e