• 제목/요약/키워드: Cell cycle genes

검색결과 433건 처리시간 0.025초

Identification of a Domain in Yeast Chitin Synthase 3 Interacting with Chitin Synthase 4 by Two-Hybrid Analysis

  • Park, Hyun-Sook;Shin-Jung-Choi;Nok-Hyun-Park;Chi-Hwa-Kim;Sung-Uk-Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.943-949
    • /
    • 2002
  • It has been proposed that chitin synthase 3 (CHS3)-nediated chitin synthesis during the vegetative cell cycle is regulated by chitin synthase 4 (CHS4) of Saccharomyces cerevisiae. To investigate direct protein-protein interaction between the coding products of these two genes, a domain of Chs3p that is responsible for interaction with Chs4p was identified, using the yeast two-hybrid system. This domain of 54 amino acids, termed MIRC3-4 (Maximum Interacting Region of Chs3p with Chs4p), is well conserved among CHS3 homologs of various fungi. Some mutations in MIRC3-4 resulted in a decrease in the enzymatic activity and chitin contents. Chs3p carrying those mutations exhibited weak interactions with Chs4p, when assayed by the yeast two-hybrid system. Surprisingly, all the mutants were sensitive to Calcofluor regardless of changes in enzymatic activities or chitin contents. This report deals with a core region in MIRC3-4 that affects the interaction with Chs4p.

Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling

  • Lee, Hye-Jin;Kim, Mi-Yeon;Park, Hee-Sae
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.431-437
    • /
    • 2015
  • Notch signaling plays a pivotal role in cell fate determination, cellular development, cellular self-renewal, tumor progression, and has been linked to developmental disorders and carcinogenesis. Notch1 is activated through interactions with the ligands of neighboring cells, and acts as a transcriptional activator in the nucleus. The Notch1 intracellular domain (Notch1-IC) regulates the expression of target genes related to tumor development and progression. The Notch1 protein undergoes modification after translation by posttranslational modification enzymes. Phosphorylation modification is critical for enzymatic activation, complex formation, degradation, and subcellular localization. According to the nuclear cycle, Notch1-IC is degraded by E3 ligase, FBW7 in the nucleus via phosphorylation-dependent degradation. Here, we summarize the Notch signaling pathway, and resolve to understand the role of phosphorylation in the regulation of Notch signaling as well as to understand its relation to cancer. [BMB Reports 2015; 48(8): 431-437]

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.

Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock;Won, Hyo-Kyoung;Jeon, Hye-Young;Kim, Bo-Ra;Lee, Taek-Kyun;Park, Hong-Seog;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • 제5권4호
    • /
    • pp.283-290
    • /
    • 2009
  • Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.

다양한 환경변이원의 분자독성학적 메커니즘 연구에 있어서 항종양 인자 p53의 중요성 고찰 (The Overview of the Importances of Tumor Suppressor p53 for Investigating Molecular Toxicological Mechanisms of Various Environmental Mutagens)

  • 정화진;류재천;서영록
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권3호
    • /
    • pp.321-326
    • /
    • 2004
  • The study of p53 tumor suppressor protein is one of most important subjects in an environmental toxicology as well as in cancer biology. Generally, p53 has been known to involve the cell cycle regulation and apoptosis by the activation of its target genes such as p21 and bax in a number of cellular stress responses. In addition, associations of p53 with cellular proteins presumably reflect the involvement of p53 in critical cellular processes such as DNA repair. The complex formation of p53 and exogenous proteins such as viral or cellular proteins has been shown in many cases to play important roles in carcinogenic processes against environmental mutagen. Recently, the disruption of p53 protein by oxidative stress has been also reported to have relevance to carcinogenesis. These findings suggested that the maintaining of stability and functional activity of p53 protein was also important aspect to play as a tumor suppressor protein. Therefore, the detection of functional status of p53 proteins might be an effective biomarker for the cancer and human diseases under the environmental toxicologic carcinogen.

효모 마이크로어레이 유전자 발현데이터에 대한 가우시안 과정 회귀를 이용한 유전자 선별 및 군집화 (Screening and Clustering for Time-course Yeast Microarray Gene Expression Data using Gaussian Process Regression)

  • 김재희;김태훈
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.389-399
    • /
    • 2013
  • 본 연구에서는 가우시안 과정회귀방법을 소개하고 시계열 마이크로어레이 유전자 발현데이터에 대해 가우시안 과정회귀를 적용한 사례를 보이고자한다. 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용한 유전자를 선별방법에 대한 모의실험을 통해 민감도, 특이도, 위발견율 등을 계산하여 선별방법으로의 활용성을 보였다. 실제 효모세포주기 데이터에 대해 제곱지수공분산함수를 고려한 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용하여 차변화된 유전자를 선별한 후, 선별된 유전자들에 대해 가우시안 모형기반 군집화를 하고 실루엣 값으로 군집유효성을 보였다.

sprD유전자의 과발현이 Streptomyces griseus HH1의 분화에 미치는 영향 (Effect of the Overexpression of the sprD Gene Encoding Streptomyces griseus Pretense D for the Differentiation of Streptomyces griseus HH1)

  • 이재학
    • 한국식품영양학회지
    • /
    • 제15권4호
    • /
    • pp.364-369
    • /
    • 2002
  • 방선균은 토양 속에 다양하게 존재하는 미생물의 일종으로 그람 양성 진정세균으로 이차대사산물을 생산하는 시기와 포자 착생이 시작되는 세포분화의 시기가 밀접한 관련이 있다. S. griseus는 streptomycin을 비롯한 다양한 종류의 endopeptidase 및 exopeptidase들을 생산한다. 방선균에서의 protease 생산은 많은 경우에 이차대사산물이 형성되거나 형태분화가 유도되는 시기에 동시에 시작된다는 점에서 Pretense가 이차대사물질 생산 및 세포분화에 일정한 기능을 수행할 것이 라는 점을 시사하고 있다. 본 연구에서는 S. griseus IFO 13350에서 클로닝한 SGPD protease가 각 strain에서 형태학적으로나 생리적으로 어떠한 gene dosage 효과를 미치는지 조사하는 것이었다. sprD 유전자가 S.lividans를 숙주로 사용한 시스템에서 대량발현이 성공적으로 되는 것을 확인한 후, 본 유전자를 클로닝한 S. griseus IFO13350 균주와 이의 A-factor 결손주인 S. griseus HH1에 형질전환하였다. S. griseus HH1과 S. griseus IFO13350에서는 protease activity가 벡터만 도입된 대조군과 sprD 유전자가 들어간 형질전환체에서 큰 차이를 보이지 않았다. 또한 S. griseus IFO 13350 및 HH1 모두에서 생리학적·형태학적 분화의 차이를 발견하지 못하였다. Chymotrypsin계열의 pretense를 암호화하는 유전자만이 S. griseus에서 발현이 repression된다는 사실을 본 연구 결과를 통하여 알게 되었다. 이를 바탕으로 sprD유전자와 동일계열의 chymotrypsin 계열의 유전자들이 공통적으로 S. griseus에서 repression 되는 일반적인 기전이 있을 것으로 판단, chymotrypsin계열 유전자들의 promoter부분의 염기 상동성을 조사하였다 번역개시부위 바로 상부 유전자부터 상동성을 조사한 결과 적어도 상당부분의 염기배열이 잘 보존된 지역이 존재함을 알게 되었다. 향후 이들 발현기구의 조절기구를 연구함으로서 protease의 기능을 밝히는데 좋은 단서를 제공할 것으로 판단된다.

대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도 (Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A)

  • 정지연;나윤숙;정호철;오상진
    • IMMUNE NETWORK
    • /
    • 제1권3호
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

대시호탕의 새로운 제형이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향 (Effects for the New Formulation of Daesiho-tang on adipocyte development and differentiation in 3T3-L1)

  • 최혜민;김세진;문성옥;이지범;이하영;김종범;이화동
    • 대한본초학회지
    • /
    • 제33권2호
    • /
    • pp.69-77
    • /
    • 2018
  • Objectives : Daesiho-tang (DSHT) has been widely used in the treatment of cerebral infarct in traditional medicine. However, there was not report on the anti-obesity-related diseases efficacy of DSHT. In this study, we investigated the effects for the new formulation of DSHT, on the adipocyte differentiation cycle in 3T3-L1 cells. Methods : 3T3-L1 cells were treated with DSHT (50, 100, $200{\mu}g/m{\ell}$) during differentiation for 6 days. Also, the inhibitory effect of DSHT against 3T3-L1 adipogenesis was evaluated in various stage of adipogenesis such as early (0-2day), intermediate (2-4day), and terminal stage (4-6day). The accumulation of lipid droplets was determined by Oil Red O staining. and, the expressions of genes related to adipogenesis were measured by RT-PCR and Western blot analyses. Results : DSHT showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affect cell toxicity as assessed by measuring fat accumulation and adipogenesis. In addition, DSHT significantly reduced the expression levels of several adipocyte marker genes including proliferator activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) and CCAAT/ enhancer-binding $protein-{\alpha}$ ($C/EBP-{\alpha}$). Also, the anti-adipogenic effect of DSHT was strongly limited in the intermediate (2-4 day), terminal stage (4-6 day) of 3T3-L1 adipogenesis. In addition, the DSHT treatment down- regulated mRNA expression levels of $PPAR-{\gamma}$,, $C/EBP-{\alpha}$ in mature 3T3-L1 adipocytes. Conclusions : These results suggest that, the ability of DSHT has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. The new formulation of DSHT may be a promising medicine for the treatment of obesity and related metabolic disorders.

구강 편평세포암종에서 p53 단백과 Cyclin D1발현에 대한 면역조직화학적 연구 (THE IMMUNOHISTOCHEMICAL STUDY ON THE EXPRESSION OF p53 PROTEIN AND CYCLIN D1 IN ORAL SQUAMOUS CELL CARCINOMAS)

  • 김종엽;김경욱;이재훈;김창진
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제21권2호
    • /
    • pp.139-148
    • /
    • 1999
  • Oral cancer is a common neoplasm in humans and etiologic mechanism is not well known, so treatment and evaluation of oral cancer is difficult problem. Traditional TNM classification between prognosis of tumors and classification of histopathologic differentiation has problem like lack of objectivity through operators. In molecular biology, cancer is developed by alteration of activation of oncogene and/or inactivation of tumor suppressor gene. The p53 gene, one of the tumor suppresor genes, is believed to play an important role through mutation and overexpression in the progression of human cancers. The p53 mutation is most frequent genetic disorder in humans. The Cyclin D1 has tumor suppresion activity by regulation of cell cycle. The Cyclin D1 regulate activity of Rb tumor suppresor gene by stimulation of CDK4 The purpose of this study was to observe the expression of p53 protein and Cyclin D1 in oral squamous cell carcinoma, and to get expectation of the malignancy and prognosis of oral squamous cell carcinoma. Using the 15 cases of squamous cell carcinoma and the microscopic H&E and immunohistochemical stain. We divided it into 3 groups according to the stain extent, clinical stage and histologic differentiation. The results were as follows1.In the features of immunohistochemical stain of 15 cases of squamous cell carcinoma, positive reaction of p53 was identified in 8 cases (53.3%) and positive reaction of cyclin D1 was identified in 3 cases (20%). Both positive reaction of p53 protein and Cyclin D1 was show in only one case. 2.8 of p53 positive cases were linked in 87.5% of the end stage tumor, 62.5% of neck node involvement, 87.5% of poorly and moderately histopathplogic differentiation. 3. All 3 of Cyclin D1 positive cases were linked in the end stage tumor, neck node involvement, poorly and moderately histopathologic differentiation. From above results, expression of p53 protein was identified in 53.3% of 15 cases and these results mean oral squamous cell carcinoma was drived by mutation of p53 protein. Especially, highly positive reaction of p53 protein and Cyclin D1 was identified in cases that involvement of neck lymph node and the end stage tumors and it means that the evaluation of p53 protein and Cyclin D1 was useful for evaluation of malignant tumor as specific tumor marker.

  • PDF