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Notch signaling plays a pivotal role in cell fate determination, 
cellular development, cellular self-renewal, tumor progression, 
and has been linked to developmental disorders and 
carcinogenesis. Notch1 is activated through interactions with 
the ligands of neighboring cells, and acts as a transcriptional 
activator in the nucleus. The Notch1 intracellular domain 
(Notch1-IC) regulates the expression of target genes related to 
tumor development and progression. The Notch1 protein 
undergoes modification after translation by posttranslational 
modification enzymes. Phosphorylation modification is critical 
for enzymatic activation, complex formation, degradation, and 
subcellular localization. According to the nuclear cycle, 
Notch1-IC is degraded by E3 ligase, FBW7 in the nucleus via 
phosphorylation-dependent degradation. Here, we summarize 
the Notch signaling pathway, and resolve to understand the 
role of phosphorylation in the regulation of Notch signaling as 
well as to understand its relation to cancer. [BMB Reports 
2015; 48(8): 431-437]

INTRODUCTION

Notch signaling is a highly conserved process and plays an im-
portant role in the regulation of cellular growth, cell cycle ar-
rest, and cellular development (1, 2). In mammals, there are 
four Notch receptors (Notch1-4) and the abnormal regulation 
of Notch1 signaling can promote cancer and other disorders 
(3, 4). Notch1 regulates the expression of target genes such as 
Hes1, Hes5, and Hey1, for the acceleration of cell growth (5). 
Notch1 is a single transmembrane receptor, which perceives 
signal transduction mediated by ligands (6). After Notch1 is ac-
tivated by docking ligands, sequential cleavage occurs to pro-
duce Notch1 intracellular domain (Notch1-IC). Notch1-IC en-
ters the nucleus and promotes the displacement of repressive 
complex which promotes the activation.

Proteins are regulated by post translational modifications 
(PTMs), which alter the stability and activities of the proteins. 
PTMs are not template-based since they differ between single 
and multiple combinations to promote the functions of pro-
teins in a time- and signal-dependent manner. Proteins are sub-
jected to various PTMs, including phosphorylation, acetyla-
tion, methylation, hydroxylation and ubiquitination. Phosphor-
ylation is the addition of a phosphate group, taken from ATP, 
to serine, threonine, or tyrosine, in order to control enzymatic 
activity and protein-protein interactions. Acetylation is the 
transfer of an acetyl group from acetyl coenzyme A to a lysine 
residue, which regulates the protein stability and function. 
Methylation is the transfer of a methyl group to the lysine or 
arginine residue of a protein, previously shown to regulate the 
epigenetic control of gene silencing and activation; however, 
protein methylation has also been shown to regulate non-his-
tone protein expression to control gene regulation and protein 
stability. Hydroxylation is the modification of a hydroxyl group 
to a proline residue under hypoxic conditions in order to adapt 
to the microenvironment. Ubiquitination is the addition of a 
ubiquitin conjugate to a lysine residue to regulate cellular lo-
cation and protein stability. PTMs are reversibly and com-
petitively regulated to control the signaling cascades respon-
sible for the maintenance of cellular homeostasis.

Particularly, protein phosphorylation controls the activation 
of signaling cascades in response to various stimuli, regulating 
cell growth and survival. The phosphorylation of Notch1-IC in-
terrupts the formation of the Notch1-IC-induced transactivation 
complex and promotes ubiquitin-dependent modification tar-
geted by the phosphorylation signal (7, 8). Various kinases are 
known to phosphorylate Notch1, and the expression of these 
kinases is different in cancers. In addition, Notch1 is mutated 
to mimic the phosphorylation-deficient form in order to avoid 
degradation in cancer. Here, we provide an overview of the 
Notch signaling pathway, and resolve to understand the role of 
phosphorylation in the regulation of Notch1 signaling.

NOTCH: RECEPTORS AND LIGANDS

Notch is a single transmembrane receptor involved in signal 
transduction as a transcription regulator (9). Notch was first 
discovered over 100 years ago by Morgan and colleagues, 
who found that the mutation of Notch genes resulted in a de-
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Fig. 1. The molecular structure of the 
Notch receptor and ligand in mam-
mals. The Notch receptor consists of 
Notch1-4, and is a heterodimer com-
plex spanning the plasma membrane. 
Notch has a functional domain, which 
regulates cellular process. Members of 
the Delta-like (1, 3 and 4) and Jagged 
(1, 2) families serve as ligands for sig-
nal transduction using the DSL 
residue. The ligands have a cysteine 
domain and an EGF-like repeat to 
specifically bind to the Notch receptor 
and the Von Willebrand factor type C 
domain for ligand dimerization. 

fect of wings in the fruit fly, Drosophila melanogaster. These 
flies have two ligands, Delta and Serrate, which induce the 
Notch signal of neighboring cells. Caenorhabditis-elegans has 
two receptors (Lin-12 and Glp-1) and four ligands (APX-1, 
LAG-2, ARG-1 and DSL-1). In mammals, there are four Notch 
receptors (Notch1-4) and five ligand genes (Delta-like 1, 3, 4 
and Jagged1, 2). Notch ligands have a Delta/Serrate/Lag-2 
(DSL) domain which allows the Notch receptor to identify the 
ligand and to receive signaling (Fig. 1) (4). Notch consists of 
various domains that precisely regulate the function. The 
Notch receptor has 36-epidermal growth factor (EGF)-like re-
peats essential for the binding of ligands. There are three juxta-
membrane repeats subjected to proteolysis in the processing of 
Notch. Also, Notch has ankyrin repeats, a transactivation do-
main (TAD) involved in the transactivation of Notch, and  a 
proline, glutamic acid, serine, and threonine (PEST)-degrada-
tion domain critical for the short half-life of Notch1 (10). 

THE CANONICAL NOTCH1 SIGNALING PATHWAY

Notch1 is initially produced as a 300 kDa monomer, which 
exists as a heterodimer at the cell surface prior to signaling. 
Before Notch1 is transported from the ER to the Golgi appara-
tus, proper glycosylation modifies the EGF repeats that have a 
consensus motif for glycosylation (11). Glycosylation-deficient 
Notch1 is non-functional and cannot be transported to the 
Golgi apparatus. During the maturation of Notch1 in the 
trans-Golgi, cleavage occurs by a furin-like convertase (S1 
cleavage) for the transportation to the cell membrane (12). This 
cleavage separates Notch1 into two fragments, making a 
heterodimer. They move to the membrane and form the trans-

membrane protein complex. Then, cell-to-cell communication 
and proteolytic processing occurs when the extracellular do-
main of Notch1 is docked onto the DSL domain of a ligand. 
Secondary hydrolysis is promoted by ligand binding, which 
cleaves the extracellular domain of the Notch1 receptor (13, 
14). The extracellular domain is subjected to secondary hy-
drolysis by ADAM (A Desintegrin And Metalloproteinase) pro-
tease and gamma secretase then cleaves the inner fragment, re-
sulting in the release of the signaling fragment, Notch1 intra-
cellular domain (Notch1-IC) (15). Then, Notch1-IC trans-lo-
cates into the nucleus and interacts with CSL (CBF/recombin-
ing binding protein suppressor of Hairless [RBP-J] in mam-
mals, SuH [Suppressor of Hairless] in Drosophila melanogaster 
and Lag-1 in C. elegans) and MAML (mastermind-like) and 
functions as a transcriptional activator to regulate its target 
gene (16, 17).

NUCLEAR CYCLE WITH THE NOTCH1 
INTRACELLULAR DOMAIN

Without Notch1 activation, RBP-J suppresses the transcription 
of target genes by forming a complex with co-repressors (18, 
19). When Notch1 is activated by ligands, nuclear-translocated 
Notch1-IC interacts with RBP-J through the RBP-J associated 
molecule (RAM) domain and dissociates the corepressor 
complex. In addition, Notch1-IC recruits the general co-
activator, p300/CBP/Mastermind (MAML-1), and another his-
tone-modifying enzyme (17, 20, 21). This complex leads to the 
transcriptional activation of target genes, including members of 
the Hairy/enhancer-of-split (HES) family, the Hairy/en-
hancer-of-split related with YRPW motif (Hey) family, nuclear 
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Fig. 2. The processing of the Notch sig-
naling pathway and the nuclear cycle. 
Notch1-IC is produced by sequential 
cleavage via ligand binding. Notch1-IC 
enters into nucleus and promotes the 
displacement of a repressive complex 
and the transactivation of Notch target 
genes. Notch1-IC activation is regulated 
by phosphorylation and ubiquitination 
with CDK8 and FBW7, respectively. 
HDAC: histone deacetylase, SPEN: 
split-ends, N-CoR: nuclear receptor cor-
epressor, SMRT: silencing mediator for 
retinoid and thyroid hormone receptors, 
MAML: Mastermind, HAT: histone ace-
tyltransferase, CoA: co-activator.

factor-kappa B (NF-B), the vascular endothelial growth factor 
receptor (VEGF), cyclin D1, c-Myc, p21, p27, Akt, etc. (22). In 
mammals especially, the best-described Notch1 target genes 
are the transcription factors Hes1, Hes5, and Hey1, the roles 
of all of which have been well demonstrated in tumor devel-
opment and progression (23). However, Notch1-induced trans-
activation is terminated by the phosphorylation of Notch1-IC. 
The phosphorylation begins with mastermind and the ski-inter-
acting protein (SKIP), which recruits kinases to the TAD or 
PEST domain (24). Then, the FBW7/ SEL-10 E3 ligases identify 
the phosphorylation of the PEST domain to promote ubiq-
uitin-mediated degradation. After Notch1-IC is degraded by 
the Notch1-targeted turn over, the repressors form a complex 
and inhibit the transcriptional activity of Notch1 target genes 
(Fig. 2) (25).

PHOSPHORYLATION-DEPENDENT REGULATION OF 
THE NOTCH1 INTRACELLULAR DOMAIN

To balance the threshold of Notch1 activity, it is effective and 
economic to down-regulate protein stability. Various reports 
have suggested that Notch1 is regulated by posttranslational 

modification such as phosphorylation and ubiquitination, dur-
ing the multiple steps of signal transduction (6). The ubiquiti-
nation of Notch ligands is necessary to activate the Notch1 sig-
naling pathway. Mind bomb ubiquitinates Delta and induces 
endocytosis and signal transduction in the signal-receiving cell 
(26). A Delta mutant that does not have the residue for ubiq-
uitination will fail to induce signal transduction of the Notch1 
receptor, while Neuralized (Neur) promotes the endocytosis 
and degradation of Delta (27). FBW7 recruits the components 
of an SCF ubiquitin ligase complex through the F-box protein, 
and recognizes a phosphor-epitope, CPD (Cdc4 phosphode-
gron; a short linear motif activated by the addition of one or 
more phosphate groups). Within these substrates via the 
WD40 domain, ubiquitin-mediated degradation is induced by 
the proteasome (28, 29). Three isoforms, FBW7 , , and , 
are distributed in the nucleoplasm, cytoplasm, and nucleolus, 
respectively, after alternative splicing (30). In particular, phos-
phorylation of the PEST domain is a substrate for recognition 
by FBW7 in the Notch1 pathway. Mastermind promotes the 
recruitment of the Cyclin C-CDK8 complex and the hyper-
phosphorylation of the PEST domain (31). Recently, Cyclin C 
has been shown to enhance the activity of CDK3 and CDK19, 
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Fig. 3. The domain architecture of 
mammalian Notch1 receptors and the 
regulation of Notch-IC by kinases. 
Notch1 is a highly conserved trans-
membrane protein including an ecto-
domain (EGF-like repeats and LNR do-
main), a heterodimerization domain 
(HD), and an intracellular domain 
(RAM domain, ankyrin repeats, TAD, 
and PEST domain). Notch1-IC is regu-
lated by the phosphorylation of sev-
eral kinases, mainly on the ankyrin 
repeats, to regulate the formation of 
the transcriptional complex. Further-
more, Notch1-IC phosphorylation of 
the PEST domain controls the protein 
stability of Notch1-IC (59, 60).

and to phosphorylate the PEST domain of the Notch1-IC of 
Thr2512, Ser2514 and Ser2517 (32). The GSK3-mediated 
phosphorylation of Notch1-IC protects from proteolysis by Itch 
(33-35). An integrin-linked kinase (ILK) is a component of in-
tegrin signaling and phosphorylates Ser2173 of mouse Notch1 
(Ser2198 in human Notch1) and down-regulates the protein 
stability of Notch1-IC, thus decreasing transcriptional activity 
(36). In addition, the phosphorylation of other domains influ-
ences transcriptional regulation. The phosphorylation of the 
ankyrin domain of Notch1 determines the transcriptional activ-
ity of the Notch1 target gene (37). The DYRK1A gene can sup-
press Notch1-induced transactivation, in a kinase-dependent 
manner, without affecting protein stability (38). Akt promotes 
hyperphosphorylation and disrupts the translocation of 
Notch1-IC, resulting in the inhibition of the transcriptional reg-
ulation (39). Nemo-like kinase (NLK) phosphorylates the mem-
brane-tethered Notch1 protein, as well as the Notch intra-
cellular domain. NLK-mediated phosphorylation does not in-
terfere with the nuclear localization of Notch1-IC, but de-
creases the interaction of Mastermind and the association of 
the Notch active transcription complex (Fig. 3) (40). 

EFFECT OF NOTCH SIGNALING ON CANCER

Several tumors exploit the potential of Notch1 as an oncogene 
and tumor suppressor. According to COSMIC data, hema-
topoietic and lymphoid cancers show a high mutation rate of 
Notch1 at 72%, and solid tumors in the upper aerodigestive 
tract, large intestine, lung, skin, stomach, and breast also show 
aberrant expression of Notch1. Previous studies reported the 
Notch1 protein stabilized in T-cell acute lymphoblastic leuke-

mia (T-ALL) and solid tumors such as breast cancer, murine 
mammary cancer and lung cancer (41, 42). Patients of T-ALL 
have shown epigenetic mutations, including the translocation 
of the 3’-region of Notch1 in T-cell receptor beta locus. The 
Notch1 intracellular domain (Notch1-IC) is over-expressed, re-
sulting in the activation of target genes. The aberrant ex-
pression of Notch1-IC induces the accumulation and cell-cycle 
arrest of bone marrow progenitor cells, resulting in the tumori-
genesis of lymphoid cancer (41). The abnormal expression of 
Notch1 was also shown in breast cancer with high levels of 
Notch1-IC being expressed in 20 breast cancer tissues and the 
negative regulator of Notch1 signaling, Numb, being 
down-regulated in these tissues (43). According to research in 
Chinese breast cancer patients using reverse transcription poly-
merase chain reaction (RT-PCR) and immunohistochemistry, 
the aberrant expression of Notch1 was shown, especially in 
those with stage 2 lobular carcinoma (44). In another study, 
the levels of Notch1-IC and p21 in 109 cases of gastric cancer, 
a major disease in developing countries, was examined using 
immunohistochemistry (45). The expression of Notch1-IC in-
creased in the more advanced stage cancers, while the ex-
pression of p21 was down-regulated in these cases. This neg-
ative correlation consequently promotes the invasion and phe-
notypic characteristics of the tumor.

In addition to a mutation on the hetero-dimerization do-
main, the main Notch1 active mutation is a frame shift to co-
don 2515 in the PEST domain, producing insensitivity to 
FBW7 (46). The numerous cancer-associated mutations within 
the CPDs of FBW7 substrates disrupt sensitivity to FBW7 deg-
radation (47). Peptidyl-prolyl cis-trans isomerase 1 (Pin1) regu-
lates the isomerization and inactivation of FBW7 and stabilizes 
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Notch1-IC, by inhibiting the FBW7-mediated degradation of 
Notch1-IC (48). Notch1 signaling is engaged in epithelial-mes-
enchymal transition by regulating the transcription regulators 
such as Snail, Slug, TGF-, FGF, and PDGF and supports the 
phenotypic and functional changes during tumor progression 
(49, 50). Notch1 activation promotes the migration and angio-
genesis of cancer and increases the self-renewal activity of can-
cer stem cells (51). Notch1 induces the expression of Sox2, 
NANOG and Oct4 to support the activity of tumor-initiating 
cells, cancer stem cells, which are highly related to tumor mi-
gration and recurrence (52).

CROSS-TALK BETWEEN THE NOTCH1 SIGNALING 
PATHWAY AND OTHER SIGNALING PATHWAYS

Notch1 signaling regulates various factors that are the main 
regulators of other signaling pathways, including the PI-3K/Akt, 
NF-B, mTOR, and TGF- signaling pathways, and interacts 
with oncogenic proteins (22). A phosphatase, PTEN, is a neg-
ative regulator of Akt signaling by dephosphorylation of the ac-
tive phosphor residue, and is typically mutated in cancer (53). 
HES1, one of the Notch1 target genes, binds to the promoter 
region of PTEN and down-regulates the expression, resulting in 
the stabilization of Akt activity. Furthermore, Akt promotes the 
protection of cancer cells from apoptosis via the NF-B signal-
ing pathway, and angiogenesis via the mTOR signaling path-
way (54). NF-B, which plays a role as a transcription factor of 
the immune system and cell proliferation, activates the ex-
pression of Notch1 target genes. Notch1-IC activates NF-B 
signaling through direct interaction, and through the 
RBP-J-mediated transcriptional regulation of p100 and p52, 
which are subunits of NF-B (55). In mTOR signaling, mTOR 
is phosphorylated by the PI-3K/Akt pathway and vice versa to 
regulate cell growth, differentiation, cell survival and 
autophagy. Notch1-IC inhibits the expression of the tumor sup-
pressor, p53, which is a key regulator of cell apoptosis, by de-
creasing functionally active phosphor-residues (Ser15, 20, and 
392) via the mTOR and PI-3K/Akt pathways (56). Notch1 sig-
naling is related to growth factors, such as the platelet-derived 
growth factor (PDGF), HER/ErbB interactions with epithelial 
growth factors and transforming growth factor-, vascular en-
dothelial growth factor (VEGF), and transforming growth factor 
(TGF)- (22). TGF- induces Hey1, a Notch target gene, and 
Jagged1, a Notch ligand, to promote epithelial-mesenchymal 
transition. Notch1-IC forms a transcriptional complex with 
Smad3, a component of canonical TGF- signaling and regu-
lates the expression of Hes1 by binding to the promoter (57). 
These signal cross-talks between oncogenic signaling pathways 
are very sophisticated regulation processes during cell fate de-
termination and cancer development (22). 

CONCLUDING REMARKS

We briefly provided an overview of the Notch1 signaling path-

way, and elucidated the role of phosphorylation in the regu-
lation of cancer progression and development. Turnover of 
Notch1-IC expression was shown to be a key determinant in 
the regulation of this activity. Several kinases were shown to 
promote the phosphorylation of Notch1 in the ankyrin domain 
and PEST domains, which affects the transactivation and pro-
tein stability of Notch1. In particular, the phosphodegron, rec-
ognized by the E3 ubiquitin ligase FBW7 for degradation, ex-
ists in the PEST domain. Additionally, cancer cells were shown 
to avoid the degradation of Notch1-IC by promoting C-termi-
nal truncation. Cyclin C and its partners CDK8, CDK3, and 
CDK19 have been suggested to phosphorylate Notch1-IC on 
the phosphodegron along with its nearby residues. The Cyclin 
C-CDK complex promotes the degradation of Notch1-IC and is 
regarded as a tumor suppressor. However, Cyclin and Cyclin 
dependent kinases (CDKs) are controlled temporally, accord-
ing to the cell cycle mechanism, and Notch1 functions in cell 
fate determination and differentiation in steady state (58). 
Thus, further studies focused on the discovery of other kinases 
targeting the phosphodegron of Notch1-IC may have great po-
tential in suggesting a target protein for cancer therapy. While 
cancer therapies such as surgery, irradiation therapy, and che-
motherapy are primarily used, inducible kinases may be effec-
tive in managing cancer growth and survival by down-regulat-
ing Notch signaling. Therefore, further studies focused on dis-
covering a new regulator of Notch signaling should be carried 
out to improve the treatment and control of cancer in humans.
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