• Title/Summary/Keyword: Cell cultures

Search Result 1,278, Processing Time 0.039 seconds

Variability of Azadirachtin in Azadirachta indica (neem) and Batch Kinetics Studies of Cell Suspension Culture

  • Prakash Gunjan;Emmannuel C.J.S.K.;Srivastava Ashok K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2005
  • Seeds of neem were collected from different parts of India and analyzed for their azadirachtin content by High Performance Liquid Chromatography (HPLC). In order to assess the effects of genotypic and geographical variation on azadirachtin content in cell cultures, callus development was attempted in the seeds containing high and low concentration of azadirachtin. The concentration of azadirachtin in callus cultures was significantly affected by the explant source. Seed kernels with higher azadirachtin content produced higher azadirachtin content in callus cultures and lower azadirachtin content was seen in callus cultures produced from seed kernels with low azadirachtin content. The protocol for development of elite stock culture of Azadirachta indica was established with the objective of selecting a high azadirachtin-producing cell line. The highest azadirachtin-producing cell line was selected and the effects of different media and illumination conditions on growth and azadirachtin production were studied in shake flask suspension culture. Detailed batch growth kinetics was also established. These studies provided elite starter culture and associated protocols for cultivation of A. indica plant cell culture in the bioreactor.

Berberine Production by Cell Suspension Cultures of Cork Tree (Phellodendron amurense Rupr)

  • Choi, Myung-Suk;Shin, Dong-Ill;Park, Young-Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.1
    • /
    • pp.32-36
    • /
    • 1996
  • Various culture conditions for cell growth and berberine production in cork tree (Phellodendron amurense Rupr.) were investigated. Callus was induced from cambium tissue of cork tree, and cultured on LS liquid medium supplemented with 0.5 mg/1 2,4-D, 0.1mg/1 BA, and 3% sucrose. Several factors enhancing berberine production and cell growth in cork tree cell cultures were found. Some of them enhanced both cell growth and berberine production, but others resulted in a decoupling of cell growth and berberine production with significant in the specific levels. High level of nitrate (80mM), high level of phosphate (8.98mM), and sucrose (7%), 1.0mg/l IAA were effective in berberine production, whereas low level of nitrate (40mM), and phosphate (2.25mM), and high level of sucrose (7%) in the medium were effective in cell growth. Two stage culture(first stage for cell growth, and second stage for berberine production) increased berberine production almost twice (5.06mg/g dry weight) as much as single stage cultures in berberine production.

  • PDF

Glucosylation of Salicyl Alcohol by Cell Suspension Cultures of Solanum mammosum

  • Syahrani, Achmad;Indrayanto, Gunawan;Wilkins, Alistair;Sutarjadi, Sutarjadi
    • Natural Product Sciences
    • /
    • v.3 no.1
    • /
    • pp.71-74
    • /
    • 1997
  • Cell suspension cultures of Solanum mammosum transformed inoculated salicyl alcohol into salicin $(salicyl\;alcohol\;2-0-{\beta}-D-glucopyranoside)$. The highest level of salicin (59.3 mg/flask) in the cells was formed within 3 days after inoculating with salicyl alcohol (50 mg /flask containing 50 ml medium). The glucosylation capability of salicyl alcohol by cell suspension cultures of S. mammosum was relatively higher than that reported previously.

  • PDF

Effects of Silkworm Hemolymph on Cell Viability and hCTLA4Ig Production in Transgenic Rice Cell Suspension Cultures

  • Cheon, Su-Hwan;Lee, Kyoung-Hoon;Kwon, Jun-Young;Ryu, Hyun-Nam;Yu, Da-Hyun;Choi, Yong-Soo;Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1944-1948
    • /
    • 2007
  • Silkworm hemolymph (SH), prepared from fifth-instar larvae of Bombyx mori and heat-treated at $60^{\circ}C$ for 30 min, was used to improve cell viability and the production of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic Oryza sativa L. cell suspension cultures. Even though SH could not elevate cell viability at the concentrations up to 3% (v/v), addition of 0.3% (v/v) SH to a culture medium enhanced the production of hCTLA4Ig by 36.8% over an SH-free medium. Moreover, the production period of hCTLA4Ig could be shortened in a 0.3% (v/v) SH-added medium compared with that in an SH-free culture. As a result, addition of 0.3% (v/v) SH improved the productivity of hCTLA4Ig significantly in transgenic rice cell cultures.

Production of Gomisin J from Cell Suspension Cultures of Schisandra chinensis Baillon (오미자의 현탁배양세포로부터 Gomisin J의 생산)

  • Hwang, Sung-Jin;Pyo, Byoung-Sik;Lee, Hak-Ju;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.6
    • /
    • pp.442-447
    • /
    • 2004
  • Cell growth and gomisin J production by suspension cultures of Schisandra chinensis Baillon were investigated under various culture media, initial sucrose concentrations, shaking speeds, and inoculum sizes. Callus was induced from in vitro cultivated leaf segments on MS medium supplemented with $1\;mg/{\ell}$ NAA. The maximum dry cell weight of 2.23 g was obtained at inoculum size of 0.5 g fresh cell weight and in MB5 medium supplemented with $1\;mg/{\ell}$ NAA, 3% sucrose after 8 weeks. The production of gomisin J in suspension cell cultures was maximized in WPM medium containing 5% sucrose. The shaking speed for maintaining maximal cell dry weight was 100 rpm while the best shaking speed for gomisin J accumulation was 140 rpm.

Estimation of Cellular Damages Caused by Paraquat and lead Using a Cell Culture System

  • Park, Young-Im;Noh, Eun-Woon;Han, Mu-Seok;Yi, Yong-Sub
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • A cell culture system of poplar (Populus alba x P.glandulosa) was established to test four different methods for evaluation of cellular stresses. Two different kinds of stresses were given to the cultures by adding either Pb(NO$_3$)$_2$ or paraquat and the cellular responses were monitored during a week period. While fresh weight reduction was observable in two days after the treatment of Pb(NO$_3$)$_2$, such changes were apparent only in later stage in paraquat treated cultures. Cells in paraquat treated cultures in the first 3 days showed no alteration in fresh weight as compared to untreated cultures, but had their MTT reducing activities completely inhibited. Neither Evans blue staining nor ion conductivity of the medium was consistent with fresh weight changes of the cultures. Overall, cell clumps formed during suspension culture appeared to interfere with staining and washing reactions and thus cause the assays unreliable. Among the four methods examined, fresh weight changes and MTT reducing activity appeared to be the most reliable and consistent.

  • PDF

Effects of Inoculum Density and Basal Media on Cell Growth and Taxol Production in Taxus Cell Suspension Cultures (주목 세포배양에서 초기 접종농도와 기본배지가 세포증식과 Taxol 생산에 미치는 영향)

  • 황용순;김석우
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.600-605
    • /
    • 1996
  • Optimum inoculum concentration for the production of taxol was determined in Taxus brevifolia and Taxus cuspidata cell suspension cultures. By fresh weight, 2.5, 5, 7.5, 10 g/flask of cells were inoculated and cell growth as well as taxol production were examined. In both Taxus cell cultures, the higher the inoculum concentration, the shorter the length of the lag period. The optimum inoculum concentration for taxol production was found to be 5 g/flask. To produce taxol in large quantity, utilization of proper medium was thought to be important. In case of using a production medium with 6% sucrose, taxol production was noticed. Its level reached the maximum at the 9th day of culture and decreased afterwards. However, taxol was not detected from cell cultures in growth medium.

  • PDF

Establishment of the cell lines with plant regeneration ability and low ploidy level in Dianthus acicularis with the aid of flow cytometry analysis

  • Shiba, Tomonori;Mii, Masahiro
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.112-119
    • /
    • 2005
  • Efficient plant regenerationsystem from cell suspension cultures was established in D. acicularis (2n = 90) by monitoring ploidy level and visual selection of the cultures. The highly regenerable cell lines selected maintained original ploidy level and consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.

  • PDF

Enhanced Production of hGM-CSF by Immobilized Transgenic Plant Cell Cultures (형질전환된 식물세포에서 고정화 방법을 통한 hCM-CSF의 생산성 증대 연구)

  • Noha, Yun-Sook;Nama, Hyung-Jin;Choi, Hong-Yeol;Tak, Sa-Ra;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • Plant cell immobilization can protect plant cells from shear forces and increase the stability of gene. An additional advantage of immobilization is the easiness for performing continuous culture with cell recycling. Therefore plant cell immobilization can overcome the limitations of plant cell applications. In addition, target protein should be selected from pharmaceutical proteins to get rid of low expression level problem. The enhanced production of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was investigated in immobilized Nicotiana tabacum suspension cell cultures. When the cells were immobilized in polyurethane foam, specific production of hGM-CSF was higher than that in alginate bead immobilization. Optimum continuous culture condition was the addition of 60 g/L sucrose in growth media with exchanging media every 6 day. Under the same condition, specific hGM-CSF production was 7 times higher in a 500-mL spinner flask than that in 100-mL Erlenmeyer flasks. Therefore, development of an effective immobilization process would be possible when the advantage of easy cell recycling was used. Consequently, enhanced production of target proteins could be possible in immobilized continuous cultures when the advantages of immobilization were applied.

Effects of Antioxidants on Cell Viability and hGM-CSF Production by Transgenic Nicotiana tabacum Suspension Cultures (형질전환된 Nucotiana tabacum 현탁세포배양에서 항산화제가 세포생존도 및 hGM-CSF 생산에 미치는 영향)

  • Kim Yong Hoon;Lee Sang Yoon;Kim Dong Il
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.374-380
    • /
    • 2004
  • Production of therapeutic proteins by transgenic plant cell suspension cultures is an attractive system alternative to the other expression system. However, plant cell cultures have shown low expression level of foreign proteins and decreased cell viability by the changes of culture conditions. Therefore, it is necessary to enhance cell viability during the culture period. In this study, a quantitative analysis technique was designed to measure relative cell viability for plant suspension cells which have cell wall and aggregates. It was found that the programmed cell death of plant cells by apoptosis was essentially linked with the apoptotic pathway of animal cells. Therefore, effects of nicotinamide, 3-aminobenzamide and antioxidants on cell viability and apoptosis were examined in transgenic Nicotiana tabacum cells producing hGM-CSF. With those additives, cell viability could be maintained and apoptosis could be redued. In the result, the extracellular production of hGM-CSF could be enhanced 2.5 fold. It was also found that the supplementation of glutathione and ascorbic acid suppressed both the cold stress-induced decrease in cell viability and the increase of total genomic DNA fragmentation.