• Title/Summary/Keyword: Cell complex

Search Result 1,985, Processing Time 0.03 seconds

Roles of YAP in mediating endothelial cell junctional stability and vascular remodeling

  • Choi, Hyun-Jung;Kwon, Young-Guen
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.429-430
    • /
    • 2015
  • Angiogenesis is a complex process involving dynamic interaction of various cell to cell interactions. Endothelial cell interactions regulated by growth factors, inflammatory cytokines, or hemodynamic stress are critical for balancing vascular quiescence and activation. Yes-associated protein (YAP), an effector of Hippo signaling, is known to play significant roles in maintaining cellular homeostasis. However, its role in endothelial cells for angiogenic regulation remains relatively unexplored. We demonstrated the critical role of YAP in vascular endothelial cells and elucidated the underlying molecular mechanisms involved in angiogenic regulation of YAP. YAP was expressed in active angiogenic regions where endothelial cell junctions were relatively loosened. Consistently, YAP subcellular localization and activity were regulated by VE-cadherin-mediated PI3K/Akt pathway. YAP thereby regulated endothelial sprouting via angiopoietin-2 expression. These results provide an insight into a model of coordinating endothelial junctional stability and angiogenic activation through YAP. [BMB Reports 2015; 48(8): 429-430]

Role of vascular smooth muscle cell in the inflammation of atherosclerosis

  • Lim, Soyeon;Park, Sungha
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.

Development of Software Platform of Embedded Controller for Fuel Cell System (Fuel Cell System용 내장형 제어기의 소프트웨어 플랫폼 개발)

  • Lim, Chae-Hong;Kim, Jin-Woo;Lee, Woo-Taik
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1149-1150
    • /
    • 2006
  • This paper describes the development of software platform of embedded controller for Fuel Cell System. The fuel cell system is complex which needs an embedded controller to execute multiple tasks. The software organized by modualarization and layered architecture can perform complicated control algorithms. By development of the software platform with architectural software, the fuel cell system's embedded controller has a reusability and a scalability. And the developed software platform guarantees a execution of multiple tasks.

  • PDF

Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology

  • Teves, Joji Marie;Won, Kyoung Jae
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.591-599
    • /
    • 2020
  • Complex cell-to-cell communication underlies the basic processes essential for homeostasis in the given tissue architecture. Obtaining quantitative gene-expression of cells in their native context has significantly advanced through single-cell RNA sequencing technologies along with mechanical and enzymatic tissue manipulation. This approach, however, is largely reliant on the physical dissociation of individual cells from the tissue, thus, resulting in a library with unaccounted positional information. To overcome this, positional information can be obtained by integrating imaging and positional barcoding. Collectively, spatial transcriptomics strategies provide tissue architecture-dependent as well as position-dependent cellular functions. This review discusses the current technologies for spatial transcriptomics ranging from the methods combining mechanical dissociation and single-cell RNA sequencing to computational spatial re-mapping.

Hippo-YAP/TAZ signaling in angiogenesis

  • Park, Jeong Ae;Kwon, Young-Guen
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.157-162
    • /
    • 2018
  • Angiogenesis is a complex, multistep process involving dynamic changes in endothelial cell (EC) shapes and behaviors, especially in specialized cell types such as tip cells (with active filopodial extensions), stalk cells (with less motility) and phalanx cells (with stable junction connections). The Hippo-Yes-associated protein (YAP)/ transcription activator with PDZ binding motif (TAZ) signaling plays a critical role in development, regeneration and organ size by regulating cell-cell contact and actin cytoskeleton dynamics. Recently, with the finding that YAP is expressed in the front edge of the developing retinal vessels, Hippo-YAP/TAZ signaling has emerged as a new pathway for blood vessel development. Intriguingly, the LATS1/2-mediated angiomotin (AMOT) family and YAP/TAZ activities contribute to EC shapes and behaviors by spatiotemporally modulating actin cytoskeleton dynamics and EC junction stability. Herein, we summarize the recent understanding of the role of Hippo-YAP/TAZ signaling in the processes of EC sprouting and junction maturation in angiogenesis.

Cell Viability and Fatty Acids Composition of Zymomonas mobilis grown at different Concentrations of Ethanol (Zymomonas mobilis 균체의 지방산 분포와 균의 생존성에 미치는 ethanol 농도의 영향)

  • 권석흠;이계준
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.80-85
    • /
    • 1987
  • The aim of the present studies was to analyze the physiological background of ethanol inhibition in Zumomonas mobilis. The experiments were carried out with a number of continuous culture to give steady state concentration of ethanol. The domposition of fatty acids in the cells obtained from various conditions was analyzed and cell viability was also estimated. As results, it was found that vaccenic acid was the mafor fatty acid in the cell of Z. mobilis and the concentration was changed apparently to increase as increasing the concentration of ethanol produced from substrate utilization. Finally it was observed also that cell viability was decreased remarkably at the elevated ethanol concentration. Those changes might play important roles in the ethanol fermentation to give more complex phenomena observed at high concentration of ethanol.

  • PDF

Anti-cancer Effects of Oldenlandia diffusa, Cremastra appendiculata and Fritillaria thunbergii on MCF-7 Cells (MCF-7 인체 유방암 세포에서 백화사설초(白花蛇舌草), 산자고(山慈姑), 절패모(浙貝母)의 항암 효과)

  • Jin, Myung Ho;Hong, Sang Hoon;Park, Cheol;Choi, Yung Hyun;Park, Sang Eun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.310-316
    • /
    • 2014
  • Oldenlandia diffusa, Cremastra appendiculata and Fritillaria thunbergii are widely distributed in the Korea, China and Japan, and has been used in traditional medicine for various diseases, such as pharyngolaryngitis, tonsillitis, goiter and stomach ulcer. However, the anti-cancer activities in human breast cancer have not been clearly elucidated yet. In this study, it was compared the in vitro cytotoxic effects of single and complex treatment of O. diffusa, C. appendiculata and F. thunbergii. We treat human breast cancer MCF-7 cells with O. diffusa, C. appendiculata and F. thunbergii. And we evaluated viability, growth inhibition, morphological changes, apoptotic bodies formation, measurement of the cell cycle and formation of DNA fragmentation of these cells. It was found that single treatment of O. diffusa could inhibit the cell proliferation in human breast cancer MCF-7 cells. However, complex treatment of O. diffusa, C. appendiculata and F. thunbergii is weakly or not affect the cell proliferation of MCF-7 cells. And anti-proliferative effects of O. diffusa in MCF-7 cells was associated with G1 arrest of cell cycle. These findings suggest that O. diffusa may be a potential chemotherapeutic agent for the control of human breast cancer cells and further studies will be needed to identify the molecular mechanisms.

Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice

  • Thi, Van Anh Do;Jeon, Hyung Min;Park, Sang Min;Lee, Hayyoung;Kim, Young Sang
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.869-883
    • /
    • 2019
  • Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL-15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancer-cell vaccine using mitomycin C (MMC)-treated IL-15:IL-15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) long-term protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.

Tumour Specific and Immunosuppressive Components in Soluble Cell Extracts from Ovine Squamous Cell Carcinoma (면양(緬羊) Squamous Cell Carcinoma의 세포추출액(細胞抽出液)중에 함유된 종양특이(腫瘍特異) 및 면역기능저하물질(免疫機能低下物質))

  • Jun, Moo Hyung
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.299-310
    • /
    • 1986
  • The ovine squamous cell carcinoma (OSCC)-specific and immunosuppressive properties of OSCC extracts were investigated by using the techniques of lymphocyte blastogenicity, acid dissociation-ultrafiltration and gradient polyacrylamide gel electrophoresis. It was found that OSCC extracts contained two major and one minor protein peaks by Sephadex gel fractionation. Two major peaks bear substantial amount of immunoglobulins, antigen-antibody complex and OSCC-specific fractions, and the minor peak includes immunosuppressive materials. OSCC-specific components were detected at the molecular weights of 10,000 to 100,000 daltons in the major peaks and immunosuppressive materials at the fractions with the molecular weight of 10,000 to 100,000 and < 10,000 daltons in the minor peak. When the fractions were further separated by gradient polyacrylamide gel electrophoresis, the OSCC-specific antigens were found in the slice number 4 to 6 in fraction III, and immunosuppressive materials, in the slice numbers 9 to II in fraction V. The present results were considered to provide a basis for preparation and purification of OSCC-specific and immunosuppressive materials from the crude OSCC extracts.

  • PDF

EphA Receptors Form a Complex with Caspase-8 to Induce Apoptotic Cell Death

  • Lee, Haeryung;Park, Sunjung;Kang, Young-Sook;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • EphA7 has been implicated in the regulation of apoptotic cell death in neural epithelial cells. In this report, we provide evidence that EphA7 interacts with caspase-8 to induce apoptotic cell signaling. First, a pull-down assay using biotinylated ephrinA5-Fc showed that EphA7 co-precipitated with wild type caspase-8 or catalytically inactive caspase-8 mutant. Second, co-transfection of EphA7 with caspase-8 significantly increased the number of cleaved caspase-3 positive apoptotic cells under an experimental condition where transfection of EphA7 or caspase-8 alone did not affect cell viability or apoptosis. EphA4 also had a causative role in inducing apoptotic cell death with caspase-8, whereas EphA8 did not. Third, caspase-8 catalytic activity was essential for the apoptotic signaling cascade, whereas tyrosine kinase activity of the EphA4 receptor was not. Interestingly, we found that kinase-inactive EphA4 was well co-localized at the plasma membrane with catalytically inactive caspase-8, suggesting that an interaction between these mutant proteins was more stable. Finally, we observed that the extracellular region of the EphA7 receptor was critical for interacting with caspase-8, whereas the cytoplasmic region of EphA7 was not. Therefore, we propose that Eph receptors physically associate with a transmembrane protein to form an apoptotic signaling complex and that this unidentified receptor-like protein acts as a biochemical linker between the Eph receptor and caspase-8.