• Title/Summary/Keyword: Cell Junction

Search Result 505, Processing Time 0.034 seconds

Effect of Complex Agent NH3 Concentration on the Chemically Deposited Zn Compound Thin Film on the $Cu(In,Ga)Se_2$

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae;Park, Hi-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.35.1-35.1
    • /
    • 2010
  • The Cu(In,Ga)Se2(CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, many groups made hard efforts to overcome its disadvantages in terms of high absorption of short wavelength, Cd hazardous element. Among Cd-free candidate materials, the CIGS thin film solar cells with Zn compound buffer layer seem to be promising with 15.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, few groups were successful to report high-efficiency CIGS solar cells with Zn compound buffer layer, compared to be known how to fabricate these solar cells. Each group's chemical bah deposition (CBD) condition is seriously different. It may mean that it is not fully understood to grow high quality Zn compound thin film on the CIGS using CBD. In this study, we focused to clarify growth mechanism of chemically deposited Zn compound thin film on the CIGS, especially. Additionally, we tried to characterize junction properties with unfavorable issues, that is, slow growth rate, imperfect film coverage and minimize these issues. Early works reported that film deposition rate increased with reagent concentration and film covered whole rough CIGS surface. But they did not mention well how film growth of zinc compound evolves homogeneously or heterogeneously and what kinds of defects exist within film that can cause low solar performance. We observed sufficient correlation between growth quality and concentration of NH3 as complex agent. When NH3 concentration increased, thickness of zinc compound increased with dominant heterogeneous growth for high quality film. But the large amounts of NH3 in the solution made many particles of zinc hydroxide due to hydroxide ions. The zinc hydroxides bonded weakly to the CIGS surface have been removed at rinsing after CBD.

  • PDF

Isolation of marine birnavirus from ascidian Halocynthia roretzi, and its relation with tunic softness syndrome (멍게, Halocynthia roretzi에서 분리된 해양버나바이러스의 특성과 물렁증과의 관련성)

  • Song, Jin-Kyung;Yun, Hyun-Mi;Choi, Byeong-Dae;Oh, Myung-Joo;Jung, Sung-Ju
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.229-237
    • /
    • 2009
  • The causative agent for the tunic softness syndrome of the cultured ascidian Halocynthia roretzi from Jan 1999 to Feb 2009 was identified using virus isolation and polymerase chain reaction (PCR). The pathogenicity of the isolated virus MABV UR-1 strain was determined by experimental infection trials. The cytopathic effects was observed in CHSE-214 cell line at a level 5.1% (4/78) in normal ascidian and 1.8% in abnormal ascidian showing tunic softness syndrome signs. MABV gene was detected in 16.8% (18/107) of normal and 13.1% (5/38) of abnormal organisms by PCR. The ratio of MABV isolation and gene detection was similar level in normal and soft tunic diseased ascidian. Based on the VP2/NS junction region sequences, eight strains of virus isolated from ascidian, were included in the same genogroup with MABV which is originally isolated in wide ranges of marine fish and shellfish species. The UR-1 strain caused 60% mortality (36.5% mortality in control group) by immersion infection and 37% mortality (same mortality in control group) in injection infection indicating no significant differences in infected and control groups. These results suggest that ascidian can act as reservoir of the MABV, and this virus is not directly related with the ascidian mortality.

Normal and Abnormal Development of the Heart (심장의 정상 및 이상발생)

  • Seo, Jeong-Uk;Choe, Jeong-Yeon;Seo, Gyeong-Pil;Ji, Je-Geun
    • Journal of Chest Surgery
    • /
    • v.29 no.2
    • /
    • pp.136-146
    • /
    • 1996
  • Studies on normal human embryos and on malformed human hearts have been two main sources of the information on the developmental cardiology, Recent advances in the biological technology has opened a new era and descriptive embryology is being shifted into dynamic developmental biology. In this review, we discuss the current understanding on the cardiac embryology relevant to clinical practices of pediatric cardiology. Classical cardiac embryology starts with understanding on five segments of a straight heart tube : the sinus venosus, the primitive atria, the embryonic left ventricle, the embryonic right ventricle and the truncus arteriosus. Key steps in the normal morphogenetic process are the complex spiral septation of ventriculoarterial junction and two jumping connections : between the embryonic right atrium and embryonic right ventricle, and between the embryonic left ventricle and the aorta. Only after these two steps are successfully completed, the third fetal stage tak s place, when myocardial growth and remodeling take place There are two outstanding progresses on the cardiac embryology during recent five-year period. One is immunohistochemical mapping of the conduction system in the developing heart and the other is the understanding on the neural crest cell migration followed by molecular detection of the microdeletion of chromosome 22. A balanced progress of classical morphological studies, modern biological technics and advanced clinical medicine is an urgent task for doctors and scientists dealing with children with sick hearts.

  • PDF

Spray 방법을 이용한 결정질 태양전지 Emitter 확산의 최적화 연구

  • Song, Gyu-Wan;Jang, Ju-Yeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.406-406
    • /
    • 2011
  • 결정질 태양전지에서 도핑(Doping)은 반도체(Semiconductor)의 PN 접합(Junction)을 형성하는 중요한 역할을 한다. 도핑은 반도체에 불순물(Dopant)을 주입하는 공정으로 고온에서 진행되며 온도는 중요한 변수(Parameter)로 작용한다. 본 연구에서는 여러 가지 에미터(emitter)층 형성방법 중에 가장 저가이면서 공정과정이 간단하며 대면적 도핑이 용의한 Spray 방법을 통해 효과적인 에미터 층 형성의 최적화를 위해 DI water에 각각 1%, 3%, 5% 7%로 희석된 H3PO4용액 으로 850$^{\circ}C$에서 열처리 시간을 가변해 가며 최적화된 면저항과 표면농도 특성을 분석하였다. 도핑소스가 웨이퍼(wafer) 각각의 표면에 흡착시킨 후 오븐에 넣어 150$^{\circ}C$에서 5분간 건조시킨 후 퍼니스(furance)에 넣어 시간을 가변해 가며 도핑시켰다. Spray 방식은 기존의 방식보다 저렴하고 In-line 공정에 적합하며 대용량으로 전환이 쉽다는 많은 장점을 가지고 있다. 도핑시 먼저 spray를 이용하여 웨이퍼 표면에 균일하게 용액을 흡착시킨 후 오븐에서 150$^{\circ}C$에서 5분간 건조 후 furnace에 넣어 850$^{\circ}C$에서 시간을 가변 해가며 실험하였다. H3PO4용액의 비율이 1%일 때는 2분 이상 열처리를 하였을 때 60${\Omega}/{\Box}$ 이하로 내려가지 않았다. 이는 최초 표면농도가 낮아 더 이상 확산되지 않음을 의미한다. 또한 H3PO4의 비율이 3% 이상일 때는 열처리 시간이 1분 이하일 때 면저항의 변화가 거의 없었으나 2분 이상일 때는 시간에 따라서 점차 낮아졌으며 균일도 역시 좋아졌다. 이는 H3PO4의 비율이 3% 이상일 때는 표면농도가 높아서 1분 이하의 열처리 시간에서는 확산해 들어가는 양이 거의 같음을 알 수 있었다.

  • PDF

Growth of ZnTe Thin Films by Oxygen-plasma Assisted Pulsed Laser Deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.185-185
    • /
    • 2011
  • ZnTe semiconductor is very attractive materials for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. Another application to photovoltaics proved that ZnTe is useful for the production of high-efficiency multi-junction solar cells [2,3]. By using the pulse laser deposition system, ZnTe thin films were deposited on ZnO thin layer, which is grown on (0001) Al2O3substrates. To produce the plasma plume from an ablated ZnO and ZnTe target, a pulsed (10 Hz) YGA:Nd laser with energy density of 95 mJ/$cm^2$ and wavelength of 266 nm by a nonlinear fourth harmonic generator was used. The laser spot focused on the surface of the ZnO and ZnTe target by using an optical lens was approximately 1 mm2. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen gas flow was controlled around 3 sccm by using a mass flow controller system. During the ZnTe deposition, the substrate temperature was $400^{\circ}C$ and the ambient gas pressure was $10^{-2}$ Torr. The structural properties of the samples were analyzed by XRD measurement. The optical properties were investigated by using the photoluminescence spectra obtained with a 325 nm wavelength He-Cd laser. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system.

  • PDF

InAs/GaAs 양자점 태양전지의 여기광 세기에 따른 Photoreflectance 특성 연구

  • Lee, Seung-Hyeon;Min, Seong-Sik;Son, Chang-Won;Han, Im-Sik;Lee, Sang-Jo;Smith, Ryan P.;Bae, In-Ho;Kim, Jong-Su;Lee, Sang-Jun;No, Sam-Gyu;Kim, Jin-Su;Choe, Hyeon-Gwang;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.426-426
    • /
    • 2012
  • 본 연구에서는 GaAs p-i-n 접합 구조에 InAs 양자점을 삽입한 양자점 태양전지(Quantum Dot Solar Cell; QDSC)의 내부 전기장(internal electric field)을 조사하기 위하여 Photoreflectance (PR) 방법을 이용하였다. QDSC 구조는 GaAs p-i-n 구조의 공핍층 내에 8주기의 InAs 양자점 층을 삽입하였으며 각 양자점 층은 40 nm 두께의 i-GaAs로 분리하였다. InAs/GaAs QDSC는 분자선박막 성장장치(molecular beam epitaxy; MBE)를 이용하여 성장하였다. 이 때 양자점의 형성은 InAs 2.0 ML(monolayer)를 기판온도 $470^{\circ}C$에서 증착하였다. QDSC 구조에서 여기광원의 세기에 따른 전기장의 변화를 조사하였다. 아울러 양자점 층 사이의 i-GaAs 층 내에 6.0 nm의 AlGaAs 퍼텐셜 장벽(potential barrier)을 삽입하여 퍼텐셜 장벽 유무에 따른 전기장 변화를 조사하였다. PR 측정에서 여기광원으로는 633 nm의 He-Ne 레이저를 이용하였으며 여기광의 세기는 $2mW/cm^2$에서 $90mW/cm^2$까지 변화를 주어 여기광세기 의존성실험을 수행하였다. 여기광의 세기가 증가할수록 photovoltaic effect에 의한 내부 전기장의 변화를 관측할 수 있었다. PR 결과로부터 p-i-n 구조의 p-i 영역과 i-n 접합 계면의 junction field를 검출하였다. p-i-n의 i-영역에 양자점을 삽입한 경우 PR 신호에서 Franz-Keldysh oscillation (FKO)의 주파수가 p-i-n 구조와 비교하여 변조됨을 관측하였다. 이러한 FKO 주파수성분은 fast Fourier transform (FFT)을 이용하여 검출하였다. FKO의 주파수 성분들은 고전기장하에서 electron-heavyhole (e-hh)과 electron-lighthole (e-lh) 전이에 의해 나타나는 성분으로 확인되었다.

  • PDF

Eutectic Temperature Effect on Au Thin Film for the Formation of Si Nanostructures by Hot Wire Chemical Vapor Deposition

  • Ji, Hyung Yong;Parida, Bhaskar;Park, Seungil;Kim, MyeongJun;Peck, Jong Hyeon;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • We investigated the effects of Au eutectic reaction on Si thin film growth by hot wire chemical vapor deposition. Small SiC and Si nano-particles fabricated through a wet etching process were coated and biased at 50 V on micro-textured Si p-n junction solar cells. Au thin film of 10 nm and a Si thin film of 100 nm were then deposited by an electron beam evaporator and hot wire chemical vapor deposition, respectively. The Si and SiC nano-particles and the Au thin film were structurally embedded in Si thin films. However, the Au thin film grew and eventually protruded from the Si thin film in the form of Au silicide nano-balls. This is attributed to the low eutectic bonding temperature ($363^{\circ}C$) of Au with Si, and the process was performed with a substrate that was pre-heated at a temperature of $450^{\circ}C$ during HWCVD. The nano-balls and structures showed various formations depending on the deposited metals and Si surface. Furthermore, the samples of Au nano-balls showed low reflectance due to surface plasmon and quantum confinement effects in a spectra range of short wavelength spectra range.

Ginsenoside F1 Modulates Cellular Responses of Skin Melanoma Cells

  • Yoo, Dae-Sung;Rho, Ho-Sik;Lee, Yong-Gyu;Yeom, Myung-Hun;Kim, Duck-Hee;Lee, Sang-Jin;Hong, Sung-Youl;Lee, Jae-Hwi;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.86-91
    • /
    • 2011
  • Ginsenoside (G)-F1 is an enzymatic metabolite generated from G-Rg1. Although this metabolite has been reported to suppress platelet aggregation and to reduce gap junction-mediated intercellular communication, the modulatory activity of G-F1 on the functional role of skin-derived cells has not yet been elucidated. In this study, we evaluated the regulatory role of G-F1 on the cellular responses of B16 melanoma cells. G-F1 strongly suppressed the proliferation of B16 cells up to 60% at 200 ${\mu}g/mL$, while only diminishing the viability of HEK293 cells up to 30%. Furthermore, G-F1 remarkably induced morphological change and clustering of B16 melanoma cells. The melanin production of B16 cells was also significantly blocked by G-F1 up to 70%. Interestingly, intracellular signaling events involved in cell proliferation, migration, and morphological change were up-regulated at 1 h incubation but down-regulated at 12 h. Therefore, our results suggest that G-F1 can be applied as a novel anti-skin cancer drug with anti-proliferative and anti-migration features.

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

Ultrastructure of the Rectum Epithelial Cells in the Mosquito Larvae, Culex pipiens pallens (빨간집모기 유충 내에 있는 직장 상피세포들의 미세구조)

  • Yu, Chai-Hyeock
    • Applied Microscopy
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 1999
  • The epithelium of the rectum in the mosquito larvae, Culex pipiens pallens: Culicidae, was observed with electron microscope. The rectum of posterior hindgut was composed of epithelial tissue which were covered with cuticular intima on the luminal side, connective tissue and muscular tissue. The rectal epithelial cells were squamous absorptive cells, and apical plasma membranes were highly folded to form apical infoldings with mitochondria inserted them. The lateral plasma membranes were irregularly infolded and well developed mitochondria were found closely associated with infoldings . And intercellular spaces (or channels) were formed between the epithelial cells, whereas speptate junction was found near the apical zone between them. Also basal plasma membrane were infolded which made basal infoldings ('basal labyrinth'), and were covered with thin basal lamina. Rcetal epithelium was surrounded by the connective tissue which was contained axon and tracheole cells. Connective tissue was covered with the bundles of circular and longitudinal muscles.

  • PDF