• Title/Summary/Keyword: Cell Area

Search Result 3,089, Processing Time 0.038 seconds

Anti-Oxidative and Neuroprotective Effects of Rhei Rhizoma on BV-2 Microglia Cells and Hippocampal Neurons (대황(大黃)의 항산화와 신경세포손상 보호효능에 대한 연구)

  • Myung, Sung-Ha;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.647-655
    • /
    • 2005
  • This study demonstrated anti-oxidative and neuroprotective effects of Rhei Rhizoma. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. Neuroprotective effects were studied by using oxygen/glucose deprivation of the organotypic hippocampal slice cultures. The results obtained are as follows; The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in CA1 region, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in dentate gyrus of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in dentate gyrus, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and dentate gyrus of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region, but not in dentate gyrus of ischemic damaged hippocampus. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated decrease of LDH concentrations in culture media, but it was not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with 50 mg/ml of Puerariae Radix demonstrated increase of cell viability of BV-2 microglia cells, but it was not significant statistically. The group treated with 0.5 mg/ml of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. The groups treated with 5 and 50 mg/ml of Puerariae Radix demonstrated increases of cell viabilities of BV-2 microglia cells, but these were not significant statistically. These results suggested that Puerariae Radix revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.

Cell Replacement Algorithm for Area Optimization (면적 최적화를 위한 셀 교체 알고리듬)

  • 김탁영;김영환
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.388-391
    • /
    • 1999
  • This Paper presents an efficient algorithm that minimizes the area of the combinational system through cell replacement. During the minimization, it maintains the circuit speed same. For the minimization, the proposed algorithm defines the criticality of each cell, based on the critical delay and the number of paths passing through the cell. Then, it visits the cells of the system, one by one, from the one with the lowest criticality, and replaces it with the minimum area cell that satisfies the delay constraint. Experimental results, using the LGsynth91 benchmark circuits synthesized by misII, show that the proposed algorithm reduces the circuit area further by 17.54% on the average without sacrificing the circuit speed.

  • PDF

Module Characteristic Modeling in Terms of the Number of Divisions of Large-Area Solar Cells (대면적 태양전지의 분할 수에 따른 모듈 특성 모델링 )

  • Juhwi Kim;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.136-142
    • /
    • 2023
  • In the past, the efficiency of solar cells had been increased in order to increase the efficiency of solar modules. However, in recent years, in order to increase output in the solar industry and market, the competitiveness of solar cells based on large-area solar cells and multi-bus bar has been increasing. Multi-busbar solar module is a technology to reduce power loss by increasing the number and width of the front busbar of the solar cell and reducing the current value delivered by the busbar by half through half-cutting. In the case of the existing M2 (156.75×156.75 mm2) solar cell, even with a half-cut, power loss could be sufficiently reduced, but as the area of the solar cell is enlarged to more than M6 (166×166 mm2), the need for more divisions emerged. This affected not only solar cells but also inverters required for module array configuration. Therefore, in this study, the electrical characteristics of a large-area solar cell and after division were extracted using Griddler simulation. The output characteristics of the module were predicted by applying the solar cell parameters after division to PSPice, and a guideline for the large-area solar module design was presented according to the number of divisions of the large-area solar cell.

Solar Cell Design for Large Area Multi Busbar Module Power Loss Reduction (대면적 Multi busbar 모듈 전력 손실 저감을 위한 태양전지 설계)

  • Juhwi Kim;Jaehyeong Lee
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.34-37
    • /
    • 2023
  • Solar energy had become the main energy industry of renewable energy along with hydroelectric power generation. One of the technologies that contributed to the popularization of photovoltaic power and the decrease in the unit price of photovoltaic modules was the large-area solar cell. However, as the area increased, the light receiving area increased and the current value increased accordingly. Since power loss occurs when the current value was large, the number of busbar was increased to increase the current collection rate, and a technology to lower the current value through half-cutting was developed. The bus bar of the solar cell served as a passage through which the generated current was transmitted. This was because when the number of busbar decreases, the moving distance of electrons increased, so the amount of power generation decreases and when it increases, shadows occured. An important aspect of the electrode design was the optimal balance of these busbars and number of fingers. Therefore, in this study, the characteristics of the solar cell according to the number of front bus bars of the large-area solar cell were simulated using Griddler 2,5 pro. After selecting the number of busbar with the best characteristics, the difference was compared by varying the number of fingers and a better direction for the number of cutting was presented.

Improvement of Efficiency about $TiO_2$ Layer Multi-dividing Effect in Dye-sensitized Solar Cell (염료감응형 태양전지의 $TiO_2$ Layer 다분할 효과에 따른 효율 향상 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Lee, Kyoung-Jun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.425-427
    • /
    • 2008
  • Active area of dye-sensitized solar cell (DSSC) has an effect on the efficiency of DSSC. As the active area increases, the efficiency goes down in a general way. This is caused by the increase of internal resistance in DSSC. The internal resistances are related to various resistant elements. The charge transfer processes at Pt counter electrode and the sheet resistance of TCO are two of these resistant elements. In this study, we try to divide the active area into several small sections in a large sized cell to reduce these two internal resistant elements. As a result, we find out that the fill factor is increased and then the conversion efficiency is improved as the number of dividing active area into several small sections is increased.

  • PDF

Electron microscopic observations of the irradiation of ultra-violet ray on cryptococcus neoformans (자외선 조사처리에 의한 cryptococcus neoformans의 전자현미경적 관찰)

  • Hwang, Dong-Hoon;Koh, Choon, Myung;Choi, Tae-Joo;Lew, Joon
    • Korean Journal of Microbiology
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 1972
  • The present study is of ultra-fine structure of Cryptococcus neoformans by means of electron microscopy and reveals the following : 1) In constrast to the bacteria, the normal Cryptococcus neofrmans contains nuclear enveloped with nuclear menbrane, mitochondria, endoplasmic reticulum, distinct cell wall and cell membrane, vacuoles and storage granules as observed in the eucaryotic cells. 2) In apparent cell walls and cell membrane with the appearance of electron transparent area (ETA) and changes of cell morphology were observed in the ultra-violet ray irradiated cell. 2) In apparent cell walls and cell membrance with the appreance of electron transparent area (ETA) and changes of cell morphology were observed in the ultra-violet ray irradiated cell. 3) Morphology changes and cytoplasmic element abnormality was increased with irradiated time. 4) Increase of electron transparent area was thought to be associated with degradation of cell.

  • PDF

Two Dimensional Numerical Model for Thermal Management of Proton Exchange Membrane Fuel Cell with Large Active Area (대면적 셀 고분자 막전해질 연료전지의 열관리를 위한 2 차원 수치 해석 모델)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.359-366
    • /
    • 2008
  • A two-dimensional thermal model of proton exchange membrane fuel cell with large active area is developed to investigate the performance of fuel cell with large active area over various thermal management conditions. The core sub-models of the two-dimensional thermal model are one-dimensional agglomerate structure electrochemical reaction model, one-dimensional water transport model, and a two-dimensional heat transfer model. Prior to carrying out the simulation, this study is contributed to set up the operating temperature of the fuel cell with large active area which is a maximum temperature inside the fuel cell considering durability of membrane electrolyte. The simulation results show that the operating temperature of the fuel cell and temperature distribution inside the fuel cell can affect significantly the total net power at extreme conditions. Results also show that the parasitic losses of balance of plant component should be precisely controlled to produce the maximum system power with minimum parasitic loss of thermal management system.

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

Basal cell carcinoma and squamous cell carcinoma in a single tumor in the anterior auricular area

  • Lee, Il Seok;Hong, In Pyo;Lee, Hye Kyeong
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.4
    • /
    • pp.257-260
    • /
    • 2020
  • The concurrence of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) in a single tumor is rarely encountered. We report a case of BCC and SCC in a single tumor in the anterior auricular area. A 70-year-old woman had been diagnosed with BCC by a punch biopsy performed at a dermatology clinic. We performed wide excision of the tumor with an ulcer in the anterior auricular area. Analysis of the biopsy specimen revealed the presence of both BCC and SCC in the tumor. This case illustrates that it is necessary to establish a precise diagnosis and formulate appropriate surgical and treatment plans considering the possibility that two carcinomas may coexist, although the possibility is low in patients with skin cancer.

Slot-die Coating Method for Manufacturing Large-area Perovskite Solar Cell (대면적 페로브스카이트 태양전지 제작을 위한 슬롯-다이코팅 방법)

  • Oh, Ju-young;Ha, Jae-jun;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.918-925
    • /
    • 2021
  • The perovskite solar cell is a next-generation solar cell that replaces the existing silicon solar cell. It is a solar cell device using an organic-inorganic hybrid material having a perovskite structure as a photoactive layer. It has advantages for the process and has shown rapid efficiency improvement over the past decade. In the process of commercialization of such perovskite solar cells, research and development for a large-area coating method should be carried out. As one of the large-area perovskite solar cell large-area coating methods, the slot-die coating method was studied. By using a meniscus to pass over the substrate and coating the solution, the 3D printer was equipped with a meniscus so that it could be coated. Variables that act during coating include bed temperature, coating speed, N2 blowing interval, N2 blowing height, N2 blowing intensity, etc. By controlling these, the perovskite absorption layer was manufactured and the coating conditions for manufacturing large-area devices were optimized.