• Title/Summary/Keyword: Cauchy probability distribution

Search Result 11, Processing Time 0.02 seconds

Simulated Annealing Algorithm Using Cauchy-Gaussian Probability Distributions (Cauchy와 Gaussian 확률 분포를 이용한 Simulated Annealing 알고리즘)

  • Lee, Dong-Ju;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.130-136
    • /
    • 2010
  • In this study, we propose a new method for generating candidate solutions based on both the Cauchy and the Gaussian probability distributions in order to use the merit of the solutions generated by these distributions. The Cauchy probability distribution has larger probability in the tail region than the Gaussian distribution. Thus, the Cauchy distribution can yield higher probabilities of generating candidate solutions of large-varied variables, which in turn has an advantage of searching wider area of variable space. On the contrary, the Gaussian distribution can yield higher probabilities of generating candidate solutions of small-varied variables, which in turn has an advantage of searching deeply smaller area of variable space. In order to compare and analyze the performance of the proposed method against the conventional method, we carried out experiments using benchmarking problems of real valued functions. From the result of the experiment, we found that the proposed method based on the Cauchy and the Gaussian distributions outperformed the conventional one for most of benchmarking problems, and verified its superiority by the statistical hypothesis test.

A Note on Possibilistic Correlation

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.1-3
    • /
    • 2009
  • Recently, Carlsson, Full\acute{e}$r and Majlender [1] presented the concept of possibilitic correlation representing an average degree of interaction between marginal distribution of a joint possibility distribution as compared to their respective dispersions. They also formulated the weak and strong forms of the possibilistic Cauchy-Schwarz inequality. In this paper, we define a new probability measure. Then the weak and strong forms of the Cauchy-Schwarz inequality are immediate consequence of probabilistic Cauchy-Schwarz inequality with respect to the new probability measure.

The Role of the Cauchy Probability Distribution in a Continuous Taboo Search (연속형 타부 탐색에서 코시 확률 분포의 역할)

  • Lee, Chang-Yong;Lee, Dong-Ju
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.591-598
    • /
    • 2010
  • In this study, we propose a new method for generating candidate solutions based on the Cauchy probability distribution in order to complement the shortcoming of the solutions generated by the normal distribution. The Cauchy probability distribution has infinite mean and variance, and it has rather large probability in the tail region relative to the normal distribution. Thus, the Cauchy distribution can yield higher probabilities of generating candidate solutions of large-varied variables, which in turn has an advantage of searching wider area of variable space. In order to compare and analyze the performance of the proposed method against the conventional method, we carried out an experiment using benchmarking problems of real valued function. From the result of the experiment, we found that the proposed method based on the Cauchy distribution outperformed the conventional one for all benchmarking problems, and verified its superiority by the statistical hypothesis test.

A Clarification of the Cauchy Distribution

  • Lee, Hwi-Young;Park, Hyoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2014
  • We define a multivariate Cauchy distribution using a probability density function; subsequently, a Ferguson's definition of a multivariate Cauchy distribution can be viewed as a characterization theorem using the characteristic function approach. To clarify this characterization theorem, we construct two dependent Cauchy random variables, but their sum is not Cauchy distributed. In doing so the proofs depend on the characteristic function, but we use the cumulative distribution function to obtain the exact density of their sum. The derivation methods are relatively straightforward and appropriate for graduate level statistics theory courses.

Evolutionary Programming of Applying Estimated Scale Parameters of the Cauchy Distribution to the Mutation Operation (코시 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용한 진화 프로그래밍)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.694-705
    • /
    • 2010
  • The mutation operation is the main operation in the evolutionary programming which has been widely used for the optimization of real valued function. In general, the mutation operation utilizes both a probability distribution and its parameter to change values of variables, and the parameter itself is subject to its own mutation operation which requires other parameters. However, since the optimal values of the parameters entirely depend on a given problem, it is rather hard to find an optimal combination of values of parameters when there are many parameters in a problem. To solve this shortcoming at least partly, if not entirely, in this paper, we propose a new mutation operation in which the parameter for the variable mutation is theoretically estimated from the self-adaptive perspective. Since the proposed algorithm estimates the scale parameter of the Cauchy probability distribution for the mutation operation, it has an advantage in that it does not require another mutation operation for the scale parameter. The proposed algorithm was tested against the benchmarking problems. It turned out that, although the relative superiority of the proposed algorithm from the optimal value perspective depended on benchmarking problems, the proposed algorithm outperformed for all benchmarking problems from the perspective of the computational time.

Monotone Likelihood Ratio Property of the Poisson Signal with Three Sources of Errors in the Parameter

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.503-515
    • /
    • 1998
  • When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector, it follows approximately Poisson distribution. Under the four assumptions in the presence of errors and uncertainties for the Poisson parameters, an exact probability distribution of neutral particles have been derived. The probability distribution for the neutron signals received by a detector averaged over the three sources of errors is expressed as a four-dimensional integral of certain data. Two of the four integrals can be evaluated analytically and thereby the integral is reduced to a two-dimensional integral. The monotone likelihood ratio(MLR) property of the distribution is proved by using the Cauchy mean value theorem for the univariate distribution and multivariate distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem related to the distribution.

  • PDF

New Dispersion Function in the Rank Regression

  • Choi, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2002
  • In this paper we introduce a new score generating (unction for the rank regression in the linear regression model. The score function compares the $\gamma$'th and s\`th power of the tail probabilities of the underlying probability distribution. We show that the rank estimate asymptotically converges to a multivariate normal. further we derive the asymptotic Pitman relative efficiencies and the most efficient values of $\gamma$ and s under the symmetric distribution such as uniform, normal, cauchy and double exponential distributions and the asymmetric distribution such as exponential and lognormal distributions respectively.

Further Results on Characteristic Functions Without Contour Integration

  • Song, Dae-Kun;Kang, Seul-Ki;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.461-469
    • /
    • 2014
  • Characteristic functions play an important role in probability and statistics; however, a rigorous derivation of these functions requires contour integration, which is unfamiliar to most statistics students. Without resorting to contour integration, Datta and Ghosh (2007) derived the characteristic functions of normal, Cauchy, and double exponential distributions. Here, we derive the characteristic functions of t, truncated normal, skew-normal, and skew-t distributions. The characteristic functions of normal, cauchy distributions are obtained as a byproduct. The derivations are straightforward and can be presented in statistics masters theory classes.

Inversion of Geophysical Data with Robust Estimation (로버스트추정에 의한 지구물리자료의 역산)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.433-438
    • /
    • 1995
  • The most popular minimization method is based on the least-squares criterion, which uses the $L_2$ norm to quantify the misfit between observed and synthetic data. The solution of the least-squares problem is the maximum likelihood point of a probability density containing data with Gaussian uncertainties. The distribution of errors in the geophysical data is, however, seldom Gaussian. Using the $L_2$ norm, large and sparsely distributed errors adversely affect the solution, and the estimated model parameters may even be completely unphysical. On the other hand, the least-absolute-deviation optimization, which is based on the $L_1$ norm, has much more robust statistical properties in the presence of noise. The solution of the $L_1$ problem is the maximum likelihood point of a probability density containing data with longer-tailed errors than the Gaussian distribution. Thus, the $L_1$ norm gives more reliable estimates when a small number of large errors contaminate the data. The effect of outliers is further reduced by M-fitting method with Cauchy error criterion, which can be performed by iteratively reweighted least-squares method.

  • PDF

Nuclide composition non-uniformity in used nuclear fuel for considerations in pyroprocessing safeguards

  • Woo, Seung Min;Chirayath, Sunil S.;Fratoni, Massimiliano
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1120-1130
    • /
    • 2018
  • An analysis of a pyroprocessing safeguards methodology employing the Pu-to-$^{244}Cm$ ratio is presented. The analysis includes characterization of representative used nuclear fuel assemblies with respect to computed nuclide composition. The nuclide composition data computationally generated is appropriately reformatted to correspond with the material conditions after each step in the head-end stage of pyroprocessing. Uncertainty in the Pu-to-$^{244}Cm$ ratio is evaluated using the Geary-Hinkley transformation method. This is because the Pu-to-$^{244}Cm$ ratio is a Cauchy distribution since it is the ratio of two normally distributed random variables. The calculated uncertainty of the Pu-to-$^{244}Cm$ ratio is propagated through the mass flow stream in the pyroprocessing steps. Finally, the probability of Type-I error for the plutonium Material Unaccounted For (MUF) is evaluated by the hypothesis testing method as a function of the sizes of powder particles and granules, which are dominant parameters to determine the sample size. The results show the probability of Type-I error is occasionally greater than 5%. However, increasing granule sample sizes could surmount the weakness of material accounting because of the non-uniformity of nuclide composition.