Browse > Article
http://dx.doi.org/10.1016/j.net.2018.05.011

Nuclide composition non-uniformity in used nuclear fuel for considerations in pyroprocessing safeguards  

Woo, Seung Min (Department of Nuclear Engineering, Texas A&M University)
Chirayath, Sunil S. (Department of Nuclear Engineering, Texas A&M University)
Fratoni, Massimiliano (Department of Nuclear Engineering, University of California)
Publication Information
Nuclear Engineering and Technology / v.50, no.7, 2018 , pp. 1120-1130 More about this Journal
Abstract
An analysis of a pyroprocessing safeguards methodology employing the Pu-to-$^{244}Cm$ ratio is presented. The analysis includes characterization of representative used nuclear fuel assemblies with respect to computed nuclide composition. The nuclide composition data computationally generated is appropriately reformatted to correspond with the material conditions after each step in the head-end stage of pyroprocessing. Uncertainty in the Pu-to-$^{244}Cm$ ratio is evaluated using the Geary-Hinkley transformation method. This is because the Pu-to-$^{244}Cm$ ratio is a Cauchy distribution since it is the ratio of two normally distributed random variables. The calculated uncertainty of the Pu-to-$^{244}Cm$ ratio is propagated through the mass flow stream in the pyroprocessing steps. Finally, the probability of Type-I error for the plutonium Material Unaccounted For (MUF) is evaluated by the hypothesis testing method as a function of the sizes of powder particles and granules, which are dominant parameters to determine the sample size. The results show the probability of Type-I error is occasionally greater than 5%. However, increasing granule sample sizes could surmount the weakness of material accounting because of the non-uniformity of nuclide composition.
Keywords
Safeguards; MUF; Pyroprocessing; Nuclear material accountancy; Type-I error; Serpent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C.Y. Lee, C.H. Shin, W.K. In, Pressure drop in dual-cooled annular and cylindrical solid fuel assemblies for pressurized water reactor, Nucl. Eng. Des. 250 (2012) 287-293.   DOI
2 H. Yu, Low-Boron OPR1000 Core Based on the BigT Burnable Absorber, KAIST, 2014.
3 H. Yu, M.S. Yahya, Y. Kim, A reduced-boron OPR1000 core based on the BigT burnable absorber, Nucl. Eng. Technol. 48 (2016) 318-329, https://doi.org/10.1016/j.net.2015.12.010.   DOI
4 M.A. Williamson, J.L. Willit, Pyroprocessing flowsheets for recycling used nuclear fuel, Nucl. Eng. Technol. 43 (2011) 329-334, https://doi.org/10.5516/NET.2011.43.4.329.   DOI
5 IAEA, Status of the Treatment of Irradiated LWR Fuel, IAEA-Tecdoc-333, 1985.
6 Y. Kim, K. Kim, J. Jung, B. Park, J. Yoon, H. Lee, Design of remotely operated voloxidizer for hot-cell application, in: IEEE Int. Symp. Assem. Manuf., Suwon, Korea, 2009, pp. 393-397.
7 Y.H. Kim, H.J. Lee, J.K. Lee, J.H. Jung, B.S. Park, J.S. Yoon, S.W. Park, Engineering design of a high-capacity vol-oxidizer for handling UO2 pellets of tens of kilogram, J. Nucl. Sci. Technol. 45 (2008) 617-624.   DOI
8 S. Jeon, J. Lee, J. Lee, S. Kang, K. Lee, Y. Cho, D. Ahn, K. Song, Fabrication of UO2 porous pellets on a scale of 30 kg-U/batch at the PRIDE facility, Adv. Mater. Sci. Eng. 2015 (2015).
9 J. Hayya, D. Armstrong, N. Gressis, A note on the ratio of two normally distributed variables, Manage. Sci. 21 (1975) 1338-1341, https://doi.org/10.1287/mnsc.21.11.1338.   DOI
10 N. Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pickrell, J.E. Stewart, Application Guide to Neutron Multiplicity Counting, LA-13422-M, 1998.
11 A. Glaser, M. Miller, Estimating plutonium production at Israel's Dimona reactor, Aerosp. Eng. (n.d.) 1-10.
12 N. Miura, H.O. Menlove, The Use of Curium Neutrons to Verify Plutonium in Spent Fuel and Reprocessing Wastes, LA-12774-MS, 1994.
13 J.H. Yoo, C.S. Seo, E.H. Kim, H.S. Lee, A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels, Nucl. Eng. Technol. 40 (2008) 581-592.   DOI
14 S.K. Kim, W.I. Ko, S.R. Youn, R. Gao, Cost analysis of a commercial pyroprocess facility on the basis of a conceptual design in Korea, Ann. Nucl. Energy 80 (2015) 28-39, https://doi.org/10.1016/j.anucene.2015.01.011.   DOI
15 IAEA (International Atomic Energy Agency), IAEA Safeguards Glossary 2001 Edition, International Atomic Energy Agency, 2001.
16 H. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho, E.H. Kim, Pyroprocessing technology developments at KAERI, Nucl. Eng. Technol. 43 (2011) 317-328.   DOI
17 H.L. Chang, F.X. Gao, W.I. Ko, H.D. Kim, S.Y. Lee, Evaluation of sigma-MUF (material unaccounted for) for the conceptually designed Korea advanced pyroprocess facility, J. Korean Phys. Soc. 59 (2011) 1418.   DOI
18 C.G. Bathke, B.B. Ebbinghaus, B.A. Collins, B.W. Sleaford, K.R. Hase, M. Robel, R.K. Wallace, K.S. Bradley, J.R. Ireland, G.D. Jarvinen, M.W. Johnson, A.W. Prichard, B. Smith, The Attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios, Nucl. Technol. 179 (2012) 5-30, https://doi.org/10.13182/NT10-203.   DOI
19 P.C. Durst, R. Wallace, I. Therios, M.H. Ehinger, R. Bean, D.N. Kovacic, A. Dougan, K. Tolk, B. Boyer, Advanced Safeguards Approaches for New Reprocessing Facilities, 2007.
20 B. Han, H. Shin, H. Kim, Analysis of measurement uncertainty of material unaccounted for in the reference pyroprocessing facility, Nucl. Technol. 182 (2013).
21 M. Gonzalez, L. Hansen, D. Rappleye, R. Cumberland, M.F. Simpson, Application of a one-dimensional transient electrorefiner model to predict partitioning of plutonium from curium in a pyrochemical spent fuel treatment process, Nucl. Technol. 192 (2015) 165-171, https://doi.org/10.13182/NT15-28.   DOI
22 P.M. Rinard, H.O. Menlove, Application of Curium Measurements for Safeguarding at Reprocessing Plants, LA-13134-MS, 1996.
23 R.A. Borrelli, Use of curium spontaneous fission neutrons for safeguardability of remotely-handled nuclear facilities: fuel fabrication in pyroprocessing, Nucl. Eng. Des. 260 (2013) 64-77, https://doi.org/10.1016/j.nucengdes.2013.03.025.   DOI
24 J.G. Richard, M.L. Fensin, S.J. Tobin, M.T. Swinhoe, J. Baciak, H.O. Menlove, Characterization of the neutron source term and multiplicity of a spent fuel assembly in support of NDA safeguards of spent nuclear fuel, in: INMM 51st Annu. Meet., 2010.
25 T.H. Lee, H.D. Kim, J.S. Yoon, S.Y. Lee, M. Swinhoe, H.O. Menlove, Preliminary calibration of the ACP safeguards neutron counter, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip 580 (2007) 1423-1427, https://doi.org/10.1016/j.nima.2007.07.142.   DOI
26 T.H. Lee, H.O. Menlove, S.Y. Lee, H.D. Kim, Development of the ACP safeguards neutron counter for PWR spent fuel rods, Nucl. Instruments Methods Phys. Res. Sect. A. 589 (2008) 57-65, https://doi.org/10.1016/j.nima.2008.02.054.   DOI
27 T.H. Lee, H.D. Kim, Application of a self-multiplication correction method to a neutron coincidence counter and its calibration for spent fuel, IEEE Trans. Nucl. Sci. 56 (2009) 2791-2795, https://doi.org/10.1109/TNS.2009.2021427.   DOI
28 T.H. Lee, Y.S. Kim, H.-S. Shin, H.-D. Kim, Hot-Test results of the advanced spent fuel conditioning process safeguards neutron counter for PWR spent fuel rods, Nucl. Technol. 176 (2011) 147-154, https://doi.org/10.13182/NT11-A12549.   DOI
29 M.L. Fensin, S.J. Tobin, N.P. Sandoval, M.T. Swinhoe, S.J. Thompson, A Monte Carlo linked depletion spent fuel library for assessing varied nondestructive assay techniques for nuclear safeguards, in: Adv. Nucl. Fuel Manag. IV, 2009. LaGrange Park, IL, USA.
30 M.A. Wincek, K.B. Stewart, G.F. Piepel, Statistical Methods for Evaluating Sequential Material Balance Data, NUREG/CR-0683, PNL-2920, 1979.
31 J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, JOHN WILEY & SONS, 2012.
32 J. Leppanen, SERPENT - a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code, 2015, pp. 1-164 papers3://publication/uuid/2623C65B-C2F6-4095-8781-0298F0-93FDF.