• Title/Summary/Keyword: Cauchy integral theorem

Search Result 7, Processing Time 0.02 seconds

ON AP-HENSTOCK-STIELTJES INTEGRAL

  • Zhao, Dafang;Ye, Guoju
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.177-188
    • /
    • 2006
  • In this paper, we define and study the vector-valued ap-Henstock-Stieltjes integral, we prove the Cauchy extension theorem and the dominated convergence theorems for the ap-Henstock-Stieltjes integral.

  • PDF

A Numerical Study on 2-Dimensuional Tank with Shallow Draft (천수에서 2차원 수치파 수조에 대한 계산)

  • 임춘규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • A numerical analysis for wave motion in the shallow water is presented. The method is based on potential theory. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed common boundary to a linear solution in outer domain. In two-dimensional problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary.

  • PDF

Mean Square Response Analysis of the Tall Building to Hazard Fluctuating Wind Loads (재난변동풍하중을 받는 고층건물의 평균자승응해석)

  • Oh, Jong Seop;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • Based on random vibration theory, a procedure for calculating the dynamic response of the tall building to time-dependent random excitation is developed. In this paper, the fluctuating along- wind load is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. By deterministic function A(t)=1-exp($-{\beta}t$), the absolute value square of oscillatory function is represented from author's studies. The time-dependent random response spectral density is represented by using the absolute value square of oscillatory function and equivalent wind load spectrum of Solari. Especially, dynamic mean square response of the tall building subjected to fluctuating wind loads was derived as analysis function by the Cauchy's Integral Formula and Residue Theorem. As analysis examples, there were compared the numerical integral analytic results with the analysis fun. results by dynamic properties of the tall uilding.

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF

A Complex Velocity Boundary Element Method for Nonlinear Free Surface Problems (복소 경계요소법에 의한 비선형 자유수면문제 연구)

  • Hong, Seok Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.62-70
    • /
    • 1990
  • Cauchy의 적분공식을 복소속도(complex velocity)에 적용하여 포텐시얼 유동을 해석하는 복소경계요소법이 개발되었다. 이 결과로 얻어지는 적분방정식은 경계면에서의 접선속도(tangential velocity)와 법선속도(normal velocity)의 함수로 주어진다. 자유수면에서의 접선속도의 시간변화(evolution of tangential velocity)를 수식화하기 위하여 새로운 비선형 동역학적 자유수면경계조건(nonlinear dynamic free surface boundary condition)을 유도하였다. 복소포텐시얼 대신 복소속도를 이용하는 이 방법은 유장내의 특이점(field singularity)을 용이하게 고려할 수 있으며, 수치미분없이 직접 경계면에서의 유속을 해로서 구하게 된다. 그러나 자유수면이 존재하는 문제의 경우에는, 자유수면에서의 동역학적 경계조건을 만족 시키기 위한 계산과정에 접선 벡타의 변화량을 추정하는 것이 포함되게 되어, 계산과정이 다소 복잡하게 된다.

  • PDF

Monotone Likelihood Ratio Property of the Poisson Signal with Three Sources of Errors in the Parameter

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.503-515
    • /
    • 1998
  • When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector, it follows approximately Poisson distribution. Under the four assumptions in the presence of errors and uncertainties for the Poisson parameters, an exact probability distribution of neutral particles have been derived. The probability distribution for the neutron signals received by a detector averaged over the three sources of errors is expressed as a four-dimensional integral of certain data. Two of the four integrals can be evaluated analytically and thereby the integral is reduced to a two-dimensional integral. The monotone likelihood ratio(MLR) property of the distribution is proved by using the Cauchy mean value theorem for the univariate distribution and multivariate distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem related to the distribution.

  • PDF

THE PRODUCT OF ANALYTIC FUNCTIONALS IN Z'

  • Li, Chenkuan;Zhang, Yang;Aguirre, Manuel;Tang, Ricky
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.455-466
    • /
    • 2008
  • Current studies on products of analytic functionals have been based on applying convolution products in D' and the Fourier exchange formula. There are very few results directly computed from the ultradistribution space Z'. The goal of this paper is to introduce a definition for the product of analytic functionals and construct a new multiplier space $F(N_m)$ for $\delta^{(m)}(s)$ in a one or multiple dimension space, where Nm may contain functions without compact support. Several examples of the products are presented using the Cauchy integral formula and the multiplier space, including the fractional derivative of the delta function $\delta^{(\alpha)}(s)$ for $\alpha>0$.