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ABSTRACT Based on random vibration theory, a procedure for calculating the dynamic response of the tall building to

time-dependent random excitation is developed. In this paper, the fluctuating along- wind load is assumed as time-depen-

dent random process described by the time-independent random process with deterministic function during a short dura-

tion of time. By deterministic function A(t)=1-exp(-βt), the absolute value square of oscillatory function is represented

from author’s studies. The time-dependent random response spectral density is represented by using the absolute value

square of oscillatory function and equivalent wind load spectrum of Solari. Especially, dynamic mean square response of

the tall building subjected to fluctuating wind loads was derived as analysis function by the Cauchy’s Integral Formula

and Residue Theorem. As analysis examples, there were compared the numerical integral analytic results with the analy-

sis fun. results by dynamic properties of the tall uilding.
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요 약 시간과 공간에 따라 변화하는 난류성분의 변동풍하중을 받는 고층건물의 경량화 및 연성화 현상은 고유진동수와 감

쇠비를 적게함으로서 동적으로 매우 불리한 진동문제을 발생하게 되어, 변동풍하중을 받는 도심의 고층건물에 대한 동적해

석의 중요성이 인식되고 있다. 본 논문에서는 돌풍과 같이 짧은 시간동안에 통계적 성질이 변화하는 변동풍하중을 나타내기

위하여 정상불규칙 풍하중에 시간에 따라 변화하는 결정적함수(A(t) = 1-exp(-βt))를 곱하여 나타냈고, 이러한 변동풍하중을

받는 고층건물에 대한 평균류방향의 동적변위응답해석은 진동이론으로부터 Time-dependent Response Spectral Density함수

를 나타냈고, 진동함수를 포함하여 나타내는 Time-dependent Response Spectral Density의 진동수영역에 대한 적분의 해로부

터 동적응답을 해석적으로 구하기 위하여 Contour적분에서 Cauchy의 적분정리와 잔유치 정리(residue theorem)에 의한 잔유

치 적분으로부터 해석함수를 구했다. 해석 예에서 본 논문에서 구한 해석함수와 기존의 수치해석방법에 따른 결과를 비교

검토했고, 고층건물의 동적 특성에 따른 해석결과도 비교 검토했다.

핵심용어 진동함수, 응답스펙틀럴 함수, 코시 적분정리, 잔유치정리

1. INTRODUCTION

In recent years application of advances in structural

materials, structural design, innovative architectural concepts,

and new construction me thods has resulted in flexible and

lighter tall building with reduced damping. Consequently,

their vulnerability to random effects has been escalated.

Thus, in serviceability designing these tall building systems

efficiently for random excitation including time-dependent

properties such as wind and earthquake, it is important to

know how to estimate the time-dependent random response

in a specified duration of such loading. The time-dependent
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random processes are modeled as a uniformly modulated

random process based on Corotis and Vanmarcke (1975),

Hammond (1968), Nigam (1983). That is, the time-dependent

random excitation can be expressed as a product of a time-

independent random excitation process with a deterministic

function.

In 1961, Davenport first applied statistical concepts to

fluctuating wind load on structures. Since that time, the

statistical approach is the basis for design method of tall

building subjected to fluctuating wind load. However since

past decades, although it has been recognized that random

fluctuating wind excitations are including time-dependent

random processes during a short duration of time such as

instantaneous gust wind, in computing the overall response

of tall building subjected to fluctuating wind load, it is

commonly limited that random wind excitation can be

described by a stationary process for mean wind load of

long time wind Davenport (1962), Simiu (1974, 1976),

Solari (1988, 1993). Of course, these analysis methods may

be considered a possible design method in engineering field,

but it is important that the design process of serviceability

can be considered to be a response properties during a short

duration of time such as instantaneous gust wind. Until now,

there are no the alongwind and the acrosswind analysis

methods of the tall building subjected to fluctuating random

wind loads. Thus, in the base step of research, the main purpose

of this paper is to present on alongwind timedependent

response of tall building subjected to fluctuating random

wind load during a short duration of time. 

Based on random vibration theory, a procedure for

calculating the dynamic response of the tall building to

time-dependent random excitation is developed. In this paper,

the fluctuating wind load is assumed as time-dependent

random process described by the time-independent random

process with deterministic function during a short duration

of time. By deterministic function A(t)=1-exp(-βt), the

absolute value square of oscillatory function is represented

from author’s studies. The time-dependent random response

spectral density is represented by using the absolute value

square of oscillatory function and equivalent wind load

spectrum of Solari. Especially, dynamic mean square response

of the tall building subjected to fluctuating wind loads was

derived as analysis function by the Cauchy’s Integral Formula

and Residue Theorem. As analysis examples, there were

compared the numerical integral analytic results with the

analysis function results by dyn- amic properties of the tall

building.

2. HAZARD FLUCTUATING WIND LOAD

2.1 Fluctuating wind velocity spectrum

Dynamic alongwind response of tall building subjected

to random alongwind load is mainly due to turbulent velocity

fluctuation in the atmospheric boundary layer. Such fluctuating

velocity may be caused by a superposition of eddies,

characterized by a periodic motion of frequency. So the

total kinetic energy of the turbulent motion may be regarded

as a sum of contributions by each of the eddies of the flow.

That is, fluctuating wind velocity spectrum representing the

dependence upon wave number of these energy contributions

is defined as the energy spectrum of the turbulent motion.

Among them, the representative spectrum used for structural

design purpose is given as follows

(1)

(2)

where the Eq. (1) by Davenport (1961), the Eq. (2) by

Solari (1987), x = 1200 n/ , f = nz (z), = mean wind

velocity at height 10 m, u
*
= shear velocity, n = frequency,

(z) = mean wind velocity at height z.

2.2 Fluctuating wind load spectrum

If the horizontal dimensions of the body are small

compared to the scale turbulence, it is reasonable to assume

that the fluctuating pressures are given by the formulas.

(3)

(4)

where Pw=windward fluctuating pressure, Pl=lee ward

fluctuating pressure; Cw, Cl=mean pressure coefficient on

the windward and leeward face of the structure, u(z)=

fluctuating wind velocity, q=air density. From alongwind

cross-correlation functions of Eq. (3) and Eq. (4), the cross

spectrum of the fluctuating pressure can be expressed as
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follows

(5)

At above fluctuating pressure assumed as a distributed

stationary random load, alongwind fluctuating wind load

spectrum can be expressed as (Simiu 1996).

(6)

where

=mode shape at points

=mean wind velocity 

=fluctuating velocity spectrum

=coherence function

N(n)=alongwind cross-correlation coefficient

And recently, Solari (1993) published power spectral density

(fluctuating wind load spectrum) of the first fluctuating modal

force based on reduced equivalent wind spectrum Solari

(1988) as follows

(7)

where

= reduced equivalent wind spectrum

σu(z) = standard deviation of alongwind turbulence

CD = Cw + Cl = drag coefficient, τ = averaging time

H,B and h = height, depth, and equivalent height 

Kb = nondimensional quantity defined by mean velocity

profile.

3. DYNAMIC RESPONSE ANALYSIS

3.1 Time-dependent spectral density function

In many applications, the time-dependent power spectral

density function of random process can be shown based

on random vibration theory Nigam (1983, 1994). The

time-dependent random process is assumed to be a uniformly

modulated process, it can be expressed by Stieltjes inte-

gral form as follows 

(8)

(9)

where A(t) = slowly varying deterministic function of,

X(t) = time-independent (stationary) random processes. That

is, X(t) and covariance function K(t
1
, t

2
) of a random pro-

cess defined by X(t) can be expressed as

(10)

(11)

 

In the Eq. (11), from defined by generalized power spec-

tral density to the function can be defined as follows

(12)

Since X(t) is time-independent (stationary), by writing,

t
2

= t
1

+ τ, autocorrelation function R(τ) can be expressed

as

(13)

(14)

where Φ(w) is the power spectral density function δ(w
2
−

w
1
) is the Dirac delta function. From Eq. (11), under this

assumption, A(t) = 1 then Y(t) = X(t).

The autocorrelation function of Y(t) is given as follows

(15)

In the Eq. (15), from Eq. (14) and the property of the

Dirac delta function, It may also be expressed as

(16)

In the Eq. (16), the mean square value of is obtained by
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       (18)

(19)

Eq. (19) represents the time-dependent spectral distribu-

tion of average energy as a function of time and is the power

spectral density function of the time-independent (sta-

tionary) random process

3.2 Dynamic response of MDOF

The dynamic response of tall building subjected to

distributed random excitation can be estimated using random

vibration theory in either frequency or time domain. In this

paper, the dynamic response of the coupled MDOF system

is obtained by using normal mode method described by a

frequency domain. The equations of motion of the coupled

MODF with a described lumped mass system can be expressed

as

(20)

where M,C,K=mass, damping, and stiffness matrices of

the system, F(x)=external force. Using the normal mode

within the Eq. (20), the equation of uncoupled MDOF

system can be expressed as

(21)

where qi, ξi, wi=generalized coordinate, damping ratio, and

natural frequency in the ith, Mi, Fi(t)=generalized mass and

external force in the ith mode, ψi(z)=the ith mode shape

at height z, m(z), p(z, t)=the mass of the structure and the

external force per unit length.

In the Eq. (21), the dynamic response of the time-

invariant uncoupled MDOF system subjected to time-

dependent random processes can be obtained in the frequency

domain. From concepts of the Eq. (9) the input and the

output processes may be written as

        (22)

(23)

(24)

Then, from the orthogonal properties of Eq. (22) and the

applications of Eq. (8)-(19), the timedependent response

spectral density function for the Eq. (21) can be expressed

as follows

(25)

(26)

where integral term is a time-independent (stationary) ran-

dom process and Gj(t, w) is a oscillatory function with

deterministic function A(t). In the Eq. (25), if the damping

is small and resonant peaks are all separated, the cross

terms become negligible and can be rewritten as

(27)

Also, from associated with Eq. (21), (22) and Eq. (24),

the oscillatory function included within time-dependent

response spectral density function of uncoupled MDOF

system can be obtained by differe- ntial equation as fol-

lows

(28)

where , , . 

In this paper, using A(t) = (1-e-βt) and β is a constant

associated with amplitude. The solutions of Eq. (28) can

be derived by assumed as the general solution Gh(t,w) = Aeλt,

the particular solution Gp(t,w) = k
1
+k

2
e-βt and initial conditions

G(0,w) = 0, G(0,w) = 0.

Thus, from the solution of Eq. (28), the oscillatory

function Gi(t,w) can be obtained by author as follows
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where

Also, because the fluctuating alongwind load spectrum

of integral term within the Eq. (27) can be expressed as

simplified formulation Eq. (7), the time-dependent response

spectral density function in the fundamental mode of tall

building subjected to the time-dependent random wind

load defined such as Eq. (8) and (9) can be obtained

from Eq. (7), (27) as follows

(30)

In this paper, the oscillatory function’s absolute value

square  of Eq. (30) can be obtained by author

as follows

+

+ }

+ (31)

The parameters of the Eq. (31) can be seen by the appendix

(a)

Thus, the mean square value for time-dependent displacement

resopnse of the tall building subjected to the time-dependent

random wind load can be written by Eq. (18), (30) as

follows

(32)

3.3 Analysis function of Eq.(32)

In this paper, the integration solution of Eq. (32) can be

evaluated by contour integration in a complex plane using

the Cauchy residue theorem.

Eq. (32) can be tranformed in order to use Cauchy residue

theorem as follows.

 

 (33)

(34)

 

In the Eq. (33) and (34), z is height of the tall building,

Z is complex function. The polynomial rearrange about

ω in the Eq. (33) can be obtained as follows 

         (35)

The parameters of the Eq. (35) can be seen by the appendix

(b). Again, from Eq. (33) and (35), let the f(ω) be replaced

by the complex variable as follows
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In the Eq. (36), the particular points can be evalualuated

by

(37)

since the particular points of Eq. (37) are simple poles,

thus, the effect particular points of unit circles can be

evaluated by 

(38)

From Eq. (34), (36) and (38), the residue of the effect

particular point can be evaluated by

 

Res (39)

where

From the similar process as Eq. (39), the residues of Z
2
,

Z
3
, Z

4
 can be evaluated by

 

(40)

 

The parameters of the Eq. (40) can be seen by the appen-

dix (c). From Eq. (36), (39), and (40) can be evaluated by 

(41)

Thus, From Eq. (33) and (41), the mean square response

analysis function of the Eq. (32)’s integration solution can

be evaluated by author as follows

         

         (42)

4. NUMERICAL EXAMPLE

The tall building model examined in this paper is located

in the urban area. The properties of the tall building:

H = 250 m, B = 30 m, D = 30 m and of wind load: ρ =

1.125kg/m3, CD =1.3, CZ=10, Cy =16, CX =1.54, σu(h)=5.39m/

s, τ = 0=0, Kb = 1.5, ωu = ωo*10, zo = 0.07, u
*

= 2.2 m/s,

U(h) = 2.5u
*
ln(h/z

0
).

From the above conditions, the numerical analysis results

based on the Eq. (32) and the (42) are given as follows 
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Figure 1. Numerical analysis results of Eq. (32), (42).
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Eq.32)), short dash dot (D, Eq. (42)).

From numerical analysis results of the Fig. 1, it shows

that the mean square response of the Eq. (32) can be evaluated

by the summation of a discrete integral interval value and

the mean square response values are largely effected by

integral interval values because the numerical analytic

processes considered the different freq- uency range of the

fluctuating wind load spectrum. 

Thus, in order to obtain the function solution of the Eq.

(32), using the Cauchy residue theorem can be derived the

analysis function such as the Eq. (42). From the Fig. 1(a),

(b), it shows that mean square response analysis function

of the Eq. (42) is very close to the Eq. (32) of the integral

interval value 0.005. 

5. CONCLUSION

In this paper, in order to provide the mean square

response estimation method of a tall building subjected to

the time-dependent random wind load as uniformly modulated

process concept, the absolute value square of the oscillatory

function for deterministic function could be derived,

finally, the mean square response analysis function could

be derived by the Cauchy’s Residue Theorem. As analysis

examples, there were compared the numerical integral

analytic results with the analysis function results by the

dynamic proper- ties of the tall building. From Fig. 1 for

the Eq. (42)’s numerical analysis resultes, we know that

the effectiveness of the Eq. (42)’s mean square response

analysis function drived in this paper are evidenced by the

dynamic properties of the tall building subjected to the

fluctuating wind loads. 

Thus, the absolute value square Eq. (31) of the oscillatory

function and the Eq. (42)’s mean square response analysis

function proposed in this paper may be used for the time-

dependent response analysis at the preliminary design state

of the tall building subjected to the hazard fluctuating wind

loads. 
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Appendix (A): Parameters of the Eq. (31) given as follows

Appendix (B): Parameters of the Eq. (35) given as follows

   

 

Appendix (C): Parameters of the Eq. (40) given as follows
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