• Title/Summary/Keyword: Cations

Search Result 1,334, Processing Time 0.028 seconds

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Monitoring Soil Characteristics and Growth of Pinus densiflora Five Years after Restoration in the Baekdudaegan Ridge (백두대간 마루금 복원사업지에서의 5년 경과 후 토양특성 및 소나무 생장 모니터링)

  • Han, Seung Hyun;Kim, Jung Hwan;Kang, Won Seok;Hwang, Jae Hong;Park, Ki Hyung;Kim, Chan-Beom
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • This study was conducted to monitor the soil characteristics and growth of Pinus densiflora and to determine the effect of soil characteristics on growth rate five years after an ecological restoration project in Baekdudaegan ridge including Ihwaryeong, Yuksimnyeong, and Beoljae sites. The ecological restoration project was executed with the forest of P. densiflora in 2012-2013. In April 2018, we collected soil samples from each site and measured the height and the diameter at breach height (DBH) of P. densiflora. Although there was no significant change of soil pH compared to the early stage of restoration (one year after the project), it was high in Ihwaryeong, and Beoljae with values of 7.7 and 6.4, respectively. Also, the organic matter decreased by 70-80%, and the available phosphorus (P) was unchanged in three restoration sites. The decreased organic matter can be attributed to restriction of inflow and thus decomposition of litter in the early stage after the restoration. The tree height growth rate ($m\;yr^{-1}$) of P. densiflora in Yuksimnyeong was the highest at 1.02, followed by Beolja at 0.75 and Ihwaryeong at 0.17. The height growth rate showed negative relationships with soil pH and cations, including Na and Ca concentrations and a positive relationship with available phosphate. The low growth rate in the Ihwaryeong site, in particular, might result from the poor nutrient availability due to high soil pH and the decrease in water absorption into the root due to high Na and Ca concentrations. The substantial reduction of organic matter after five years indicates that the need for soil improvement using chemical fertilizer and biochar.

Application Effects of Fermented Mixed Organic Fertilizer Utilizing By-Products on Yield of Chinese Cabbage and Soil Environment (부산물 활용 발효 유기질비료가 배추 수량 및 토양환경에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-Min;Oh, Eun-mi;Lee, Cho-Rong;Gong, Min-Jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.77-85
    • /
    • 2020
  • This study analyzes the effects of mixed fermented organic fertilizer on chinese cabbage growth and soil properties in order to investigate the nutritional effects of organic fertilizers, which are developed as an alternative fertilizer for imported castor oil cake. In this study, four treatments were set up: 100% and 200% rate of nitrogen application (320 kg ha-1 for Chinese cabbage) on mixed fermented organic fertilizer A(FA) and mixed fermented organic fertilizer B(FB), respectively, 100% rates of the mixed expeller cake (MEC) fertilizer, and the untreated control. Results revealed that the growth and yield of Chinese cabbage increased as more fermented organic fertilizer was used. However, while there were no significant differences in growth characteristics between treatments of 100% rate of mixed fermented organic fertilizer and 100% rate of MEC, the impacts on yields resulted similar. The nitrogen use efficiency (NUE) of Chinese cabbage was measured a range of 20-31% depending on the response to treatment. The 100% FA showed the same as NUE and nitrogen absorption with 100% rate of MEC. Regarding soil properties after cultivation, there were no significant differences among the effects of fertilizers in pH, EC, soil organic matter, and available phosphate. However, the content of exchangeable cations(K, Ca, Mg) was higher in areas treated with mixed fermented organic fertilizer than in untreated areas. Furthermore, the bacterial population density in the soil was higher in areas treated with mixed fermented organic fertilizer than in untreated areas and increased as more mixed fermented organic fertilizer was used. There were no significant differences in the population density of actinomycetes and fungi when fertilizer was applied to the soil. These results also show that FA, as a alternative organic fertilizer for imported castor oil cake, has similar nutritional effects as that of MEC. Therefore, further research the appropriate amounts of fertilizer is required to achieve economical and eco-friendly nutrient management.

A Change of Stream Water Quality by Forest Types (임상에 따른 계류수의 수질변화에 관한 연구)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.142-148
    • /
    • 2011
  • This study was carried out to clarify the change characteristics of stream water quality by type of forest from June to August, 2009 in three stands (Castanea crenata, Pinus densiflora and Plantation Land) of Samgye-ri Naedong-myeon Jinju-si Gyeongsangnam-do. The pH of stream water in three stands was highest in Pinus densiflora (pH 7.18) followed by Castanea crenata (pH 6.90) and Plantation land (pH 6.90) while the electrical conductivity of stream water was highest in Plantation land followed by Castanea crenata stand and Pinus densiflora stand was the lowest. Cations contents of stream water in three stands were high in order of $Ca^{2+}$, $Na^{+}$, $Mg^{2+}$, $K^{+}$, and $NH_{4}{^{+}}$. But anions of stream water in Castanea crenata stand and Pinus densiflora stand were high in order of $SO_{4}{^{2-}}$, $Cl^{-}$ and $NO_{3}{^{-}}$ while those of stream water in Plantation land were high in order of $SO_{4}{^{2-}}$, $NO_{3}{^{-}}$ and $C\lambda^{-}$. The stream water in three stands was significant at pH, EC, $NO{^{3-}}$, $Ca^{2+}$, $Mg^{2+}$, $Na^{+}$, $Cl^{-}$, TNU and Color by duncan test. These results indicate that quality of stream water have a difference among three stands. The level of pH, $NH_{4}{^{+}}$, $Cl^{-}$, $SO_{4}{^{2-}}$ and $NO_{3}{^{-}}$ of stream water in three stands were within the domestic use standard for drinking water. but turbidity and color of stream water were more than that of domestic use standard for drinking water. Therefore, non-point sources like urban forest watersheds which are soil erosion and fertilizer application lands should be taken to the appropriate mitigation measures if they are to be used as source of drinking water.

The Washing Effect of Precipitation on PM10 in the Atmosphere and Rainwater Quality Based on Rainfall Intensity (강우 강도에 따른 대기 중 미세먼지 저감효과와 강우수질 특성 연구)

  • Park, Hyemin;Byun, Myounghwa;Kim, Taeyong;Kim, Jae-Jin;Ryu, Jong-Sik;Yang, Minjune;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1669-1679
    • /
    • 2020
  • This study examines the washing effect of precipitation on particulate matter (PM) and the rainwater quality (pH, electrical conductivity (EC), water-soluble ions concentration). Of six rain events in total, rainwater samples were continuously collected every 50 mL from the beginning of the precipitation using rainwater collecting devices at Pukyong National University, Busan, South Korea, from March 2020 to July 2020. The collected rainwater samples were analyzed for pH, EC, and water-soluble ions (cations: Na+, Mg2+, K+, Ca2+, NH4+, and anions: Cl-, NO3-, SO42-). The concentrations of particulate matter were continuously measured during precipitation events with a custom-built PM sensor node. For initial rainwater samples, the average pH and EC were approximately 4.3 and 81.9 μS/cm, and the major ionic components consisted of NO3- (5.4 mg/L), Ca2+ (4.2 mg/L), Cl- (4.1 mg/L). In all rainfall events, rainwater pH gradually increased with rainfall duration, whereas EC gradually decreased due to the washing effect. When the rainfall intensities were relatively weak (<5 mm/h), PM10 reduction efficiencies were less than 40%. When the rainfall intensities were enhanced to more than 7.5 mm/h, the reduction efficiencies reached more than 60%. For heavy rainfall events, the acidity and EC, as well as ions concentrations of initial rainwater samples, were higher than those in later samples. This appears to be related to the washing effect of precipitation on PM10 in the atmosphere.

Ecological Characteristics and Changes of Quercus mongolica Community in Namsan (Mt.), Seoul (서울시 남산 신갈나무림 생태계 특성과 변화 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.41-63
    • /
    • 2022
  • The purpose of this study is to secure objective and precise data through ecosystem monitoring, to reveal ecological characteristics through comparison and analysis with past survey data, and to accumulate basic data for diagnosing the current situation and predicting changes in the ecosystem. The target site is the 'Quercus mongolica forest on the Buksa-myeon of Namsan', which was designated as an Ecological Landscape Conservation Area (ELCA) of Seoul in July 2006. The research contents are analysis of soil environment change (1986~2016), change of actual vegetation (1978~2016), and change of plant community structure (1994~2016). A total of 8 fixed surveys (400~1,200m2) were established in 1994 and 2000. Analysis items are importance value, species and population, and Shannon's species diversity. The soil environment of Namsan is acidic (pH 4.40 in 2016), which is expected to have a negative impact on tree growth and vegetation structure due to its low capacity for exchangeable cations. Quercus mongolica forest in Namsan is mainly distributed on the northern slopes. The actual vegetation area changed from 49.4% in 1978 → 80.7% in 1986 → 82.4% in 2000 → 88.3% in 2005 → 88.3% in 2009 → 70.3% in 2016. In 2016, the forest decreased by 18% compared to 2009. While there was increased growth of Quercus mongolica in the tree layer from 2009 to 2016, the overall decline in vegetation area was due to logging and fumigation management following the spread of oak wilt in 2012. As for the changes in the plant community structure, Quercus mongolica of the tree layer was damaged by oak wilt, and the potential vegetation that can form the next generation was ambiguous. In the subtree layer, the force of urbanization tree species such as Styrax japonicus, Sorbus alnifolia, and Acer palmatum. was maintained or increased. In the shrub layer, the number of trees and species increased significantly due to the open tree crown, and accordingly, the species diversity of Shannon for woody plants also increased. In Quercus mongolica forest of Namsan, various ecological changes are occurring due to the effects of urban environments such as air pollution and acid rain, the limitation of Quercus mongolica pure forest due to oak wilt, and the introduction of exotic species, thus, it is necessary to establish a management plan through continuous monitoring.

Growing Environment Characteristics and Vegetational Structure of Sageretia thea, Medicinal Plant (약용식물 상동나무 자생지 생육환경 특성과 식생구조)

  • Son, Yonghwan;Son, Ho Jun;Park, Gwang Hun;Lee, Dong Hwan;Cho, Hyejung;Lee, Sun-Young;Kim, Hyun-Jun
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.594-606
    • /
    • 2022
  • This study was conducted to figure out the environment factors including vegetation structure and soil characteristics in natural habitats of Sageretia thea, and offers the basic information for habitats conservation and proliferation. The natural habitats of Sageretia thea were located at altitudes between 0~370 m with inclinations ranged as 3~35°. Through the vegetation research, the dominant species of tree layers were found to be divided into four communities. Cornus macrophylla (Com. I), Pinus thunbergii - Cinnamomum camphora (Com. II), Machilus thunbergii (Com. III), and Pinus thunbergii (Com. IV). The Species diversity (H') was 1.397~1.455, evenness (J') was 0.972~0.986, and dominance (D) was found to be 0.014~0.028. As a result of the physicochemical characteristics of soils, habitats soil mainly consisted of sandy soil and sandy loam soil. The average soil pH was 5.28~5.98, electronic conductivity was 0.22~63 ds/m, soil organic matter was 13.33~19.33 cmol+/kg, Exchange cations were appeared in the order of Ca2+, Mg2+, K+, and Na+. The Ordination result showed that Correlation coefficient between communities and environmental factors were significantly correlated with 4 main factors altitude, electronic conductivity, cation exchange capacity, exchangeable Na+. As expected, The result of this study will be helpful information on the preservation and mass production for use.

Mineral Geochemistry of the Albite-Spodumene Pegmatite in the Boam Deposit, Uljin (울진 보암광산의 조장석-스포듀민 페그마타이트의 광물 지화학 조성 연구)

  • Park, Gyuseung;Park, Jung-Woo;Heo, Chul-Ho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • In this study, we investigated the mineral geochemistry of the albite-spodumene pegmatite, associated exogreisen, and wall rock from the Boam Li deposit, Wangpiri, Uljin, Gyeongsangbuk-do, South Korea. The paragenesis of the Boam Li deposit consists of two stages; the magmatic and endogreisen stages. In the magmatic stage, pegmatite dikes mainly composed of spodumene, albite, quartz, and K-feldspar intruded into the Janggun limestone formation. In the following endogreisen stage, the secondary fine-grained albite along with muscovite, apatite, beryl, CGM(columbite group mineral), microlite, and cassiterite were precipitated and partly replaced the magmatic stage minerals. Exogreisen composed of tourmaline, quartz, and muscovite develops along the contact between the pegmatite dike and wall rock. The Cs contents of beryl and muscovite and Ta/(Nb+Ta) ratio of CGM are higher in the endogreisen stage than the magmatic stage, suggesting the involvement of the more evolved melts in the greisenization than in the magmatic stage. Florine-rich and Cl-poor apatite infer that the parental magma is likely derived from metasedimentary rock (S-type granite). P2O5 contents of albite in the endogreisen stage are below the detection limit of EDS while those of albite in the magmatic stage are 0.28 wt.% on average. The lower P2O5 contents of the former albite can be attributed to apatite and microlite precipitation during the endogreisen stage. Calcium introduced from the adjacent Janggun formation may have induced apatite crystallization. The interaction between the pegmatite and Janggun limestone is consistent with the gradual increase in Ca and other divalent cations and decrease in Al from the core to the rim of tourmaline in the exogreisen.

Mineral Precipitation and the Behavioral Changes of Trace Elements in Munkyeong Coal Mine Drainage (문경 석탄광 배수의 광물 침전 및 미량 원소의 거동 변화)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Ji-Woo;Ju, Ji-Yeon;Hwang, Su-Hyeon;Kim, Yeongkyoo;Park, Changyun;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.355-365
    • /
    • 2022
  • Precipitation and phase transition of iron minerals in mine drainage greatly affect the behavior of trace elements. However, the precipitation of ferrihydrite, one of the major iron minerals precipitated in drainage, and the related behavior of trace elements have hardly been studied. In this study, the effects of pH change and time on mineral precipitation characteristics in mine drainage from the Munkyeong coal mine were investigated, and the behavioral changes of trace elements related to the precipitation of these minerals were studied. In the case of precipitated mineral phases, goethite was observed at pH 4, and 2-line ferrihydrite mixed with small amount of 6-line ferrihydrite was mainly identified at pH 6 or higher. In addition, it was observed that the precipitation of calcite additionally increased as the pH increased in the samples at pH 6 or higher. The occurrence of goethite was probably due to the phase change of initially precipitated ferrihydrite within a short time under the influence of low pH. Our results showed that the concentration of trace elements was strongly influenced by pH and time. With increasing time, Fe concentration in the drainage showed a abrupt decrease due to the precipitation of iron minerals, and the concentration of As existing as oxyanions in the drainage, also decreased rapidly like Fe regardless of the pH values. This decrease in As concentration was mainly due to co-precipitation with ferrihydrite, and also partly to surface adsorption on goethite at low pH in drainage. Contrary to this observation, the concentration of other trace elements, such as Cd, Co, Zn, and Ni was greatly affected by the pH regardless of the mineral species. The lower the pH value, the higher the concentration of these trace elements were observed in the drainage, and vice versa at higher pH. These results indicate that the behavior of trace elements present as cations is more greatly affected by the mineral surface charge influenced by the pH values than the type of the precipitated mineral.

Changes of Mineralogical Characteristics of Precipitates in Acid Mine Drainage of the Dalsung Mine and Related Changes of Trace Elements (달성광산 산성광산배수 침전물의 시간에 따른 광물상 특성 변화 및 이에 따른 미량원소의 거동 변화)

  • Yoon, Young Jin;Kim, Yeongkyoo;Lee, Seong-joo
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.531-540
    • /
    • 2022
  • Various iron minerals that precipitate in acid mine drainage have a great influence on the concentration change and mobility of trace elements in the drainage during phase transition to other minerals as well as the precipitation process. This study investigated the change of mineral properties and the behaviors of trace elements influenced by pH and time for the precipitates collected from the acid mine drainage treatment system of the Dalsung mine, where schwertmannite is mainly precipitated. However, the main mineral precipitated in the drainage was goethite, suggesting schwetmannite has already undergone a phase transition to goethite to some extent, and it was observed that at higher pH, the peak width at half maximum of XRD peak was narrower. This can be interpreted as the transformation of small amount of amorphous schwetmannite to goethite or an increase in the crystallinity of goethite, and it showed that the higher the pH, the greater this change was. The concentration of Fe was also greatly affected by the pH values, and as the pH increased, the concentration of Fe in the drainage decreased. With increasing time, the Fe concentration increased and then decreased, which can be interpreted to indicate the dissolution of schwertmannite and precipitation of goethite. This mineral change probably resulted in the rapid increase of the concentration of S at initial stage, but its concentration was stabilized later. The concentration of S is also related to the stability of schwetmannite, showing a high concentration at a low pH at which schwertmannite is stable and a low concentration at a high pH at which goethite is stable. The trace elements present as cations in the drainage also showed a close relationship with the pH, generally the lower the pH, the higher the concentration, due to the solubility changes by the pH, and the precipitation and the changes in mineral surface charge at high pH. On the other hand, in the case of As, existing as an anion, although it showed a high concentration at low pH, its concentration increased with time at all pH values, which is probably related to the concentration of Fe which can be coprecipitated in the drainage, and the increase of As concentration with time is also considered to be related to the decrease in schwertmannite rather than the mineral surface charge.