Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.5.531

Changes of Mineralogical Characteristics of Precipitates in Acid Mine Drainage of the Dalsung Mine and Related Changes of Trace Elements  

Yoon, Young Jin (School of Earth System Sciences, Kyungpook National University)
Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
Lee, Seong-joo (School of Earth System Sciences, Kyungpook National University)
Publication Information
Economic and Environmental Geology / v.55, no.5, 2022 , pp. 531-540 More about this Journal
Abstract
Various iron minerals that precipitate in acid mine drainage have a great influence on the concentration change and mobility of trace elements in the drainage during phase transition to other minerals as well as the precipitation process. This study investigated the change of mineral properties and the behaviors of trace elements influenced by pH and time for the precipitates collected from the acid mine drainage treatment system of the Dalsung mine, where schwertmannite is mainly precipitated. However, the main mineral precipitated in the drainage was goethite, suggesting schwetmannite has already undergone a phase transition to goethite to some extent, and it was observed that at higher pH, the peak width at half maximum of XRD peak was narrower. This can be interpreted as the transformation of small amount of amorphous schwetmannite to goethite or an increase in the crystallinity of goethite, and it showed that the higher the pH, the greater this change was. The concentration of Fe was also greatly affected by the pH values, and as the pH increased, the concentration of Fe in the drainage decreased. With increasing time, the Fe concentration increased and then decreased, which can be interpreted to indicate the dissolution of schwertmannite and precipitation of goethite. This mineral change probably resulted in the rapid increase of the concentration of S at initial stage, but its concentration was stabilized later. The concentration of S is also related to the stability of schwetmannite, showing a high concentration at a low pH at which schwertmannite is stable and a low concentration at a high pH at which goethite is stable. The trace elements present as cations in the drainage also showed a close relationship with the pH, generally the lower the pH, the higher the concentration, due to the solubility changes by the pH, and the precipitation and the changes in mineral surface charge at high pH. On the other hand, in the case of As, existing as an anion, although it showed a high concentration at low pH, its concentration increased with time at all pH values, which is probably related to the concentration of Fe which can be coprecipitated in the drainage, and the increase of As concentration with time is also considered to be related to the decrease in schwertmannite rather than the mineral surface charge.
Keywords
acid mine drainage; schwertmannite; goethite; trace elements; mineral precipitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Casiot, C., Lebrun, S., Morin, G., Bruneel, O., Personne, J.C. and Elbaz-Poulichet, F. (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci. Total Environ., v.347, p.122-130. doi: 10.1016/j.scitotenv.2004.12.039   DOI
2 Fukushi, K., Sato, T., Yanase., N. (2003) Solid-solution reaction in As(V) sorption by schwertmannite. Environ. Sci. Technol., v.37, p.3581-3586. doi: 10.1021/es026427i   DOI
3 Gerth, J. (1990) Unit-cell dimensions of pure and trace metalassociated goethites. Geochim. Cosmochim. Acta, v.54, p.363-371. doi: 10.1016/0016-7037(90)90325-F   DOI
4 Jiang, W., Lv, J., Luo, L., Yang, K., Lin, Y., Hu, F., Zhang, J. and Zhang, S. (2013) Arsenate and cadmium co-adsorption and coprecipitation on goethite. J. Hazard. Mater., v.262, p.55-63. doi: 10.1016/j.jhazmat.2013.08.030   DOI
5 Jonsson, J., Persson, P., Sjoberg, S. and Lovgren, L. (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl. Geochem., v.20, p.179-191. doi: 10.1016/j.apgeochem.2004.04.008   DOI
6 Kim, H.-J. and Kim, Y. (2011) Transformation of schwertmannite to goethite and related behavior of heavy metals. J. Min. Soc. Kor., v.24, p.63-71. doi: 10.9727/jmsk.2011.24.2.063   DOI
7 Kim, H.-J. Kim, Y. and Choo, C.O. (2014) The effect of mineralogy on the mobility of heavy metals in mine tailings: a case study in the Samsanjeil mine, Korea. Environ. Ear. Sci., v.71, p.3429-3441. doi: 10.1007/s12665-013-2732-1   DOI
8 Kim, Y. (2018) Effects of different oxyanions in solution on the precipitation of jarosite at room temperature. J. Hazard. Mater., v.353, p.118-126. doi: 10.1016/j.jhazmat.2018.04.016   DOI
9 Knorr, K.-H. and Blodau, C. (2007) Controls on schwertmannite transformation rates and products. Appl. Geochem., v.22, p.2006-2015. doi: 10.1016/j.apgeochem.2007.04.017   DOI
10 Komarek, M., Koretsky, C.M., Stephen, K.J., Alessi, D.S. and Chrastny, V. (2015) Competitive adsorption of Cd(II), Cr(VI), and Pb(II) onto nanomaghemite: a spectroscopic and modeling approach. Environ. Sci. Technol., v.49, p.12851-12859. doi: 10.1021/acs.est.5b03063   DOI
11 Konhauser, K.O. (1998) Diversity of bacterial iron mineralization. Earth-Sci. Rev., v.43, p.91-121. doi: 10.1016/S0012-8252(97)00036-6   DOI
12 Moon, J.W., Roh, Y., Lauf, R.J., Vali, H., Yeary, L.W. and Phelps, T.J. (2007) Microbial preparation of metal-substituted magnetite nanoparticles. J. Microbiol. Methods, v.70, p.150-158. doi: 10.1016/j.mimet.2007.04.012   DOI
13 Ryu, J.-G. and Kim, Y. (2022) Mineral transformation and dissolution of jarosite coprecipitated with hazardous oxyanions and their mobility changes. J. Hazar. Mater., v.427, p.128283. doi: 10.1016/j.jhazmat.2022.128283   DOI
14 Munk, L., Faure, G. and Koski, R., (2006) Geochemical evolution of solutions derived from experimental weathering of sulfidebearing rocks. Appl. Geochem., v.21, p.1123-1134. doi: 10.1016/j.apgeochem.2006.04.003   DOI
15 Park, S. and Kim, Y. (2016) Mineralogical changes and distribution of heavy metals caused by the weathering of hydrothermally altered, pyrite-rich andesite. Environ. Earth Sci., v.75, p.1125. doi: 10.1007/s12665-016-5915-8   DOI
16 Podda, D.P., Wells, J.D. and Johnson, B.B. (1996) Anomalous adsorption of copper (II) on goethite. J. Colloid Interf. Sci., v.184, p.564-569. doi: 10.1006/jcis.1996.0652   DOI
17 A.G., Charnock, J.M. and Bardelli, F. (2010) Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates. Chem. Geol., v.271, p.1-12. doi: 10.1016/j.chemgeo.2009.12.005   DOI
18 Kawano M. and Tomita K. (2001) Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am. Mineral., v.86, p.1156-1165. doi: 10.2138/am-2001-1005   DOI
19 Crosa, M., Boero, V. and Franchini-Angela, M. (1999) Determination of mean crystallite dimensions from X-ray diffraction peak profiles; a comparative analysis of synthetic hematities. Clays Clay Min., v.47, p.742-747.   DOI
20 Hajji, S., Montes-Hernandez, G., Sarret, G., Tordo, A., Morin, G., Ona-Nguema, G., Bureau, S., Turki, T. and Mzoughi, N. (2019) Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flowthrough reactor experiments and XAS measurements. J. Hazard. Mater., v.362, p.358-367. doi: 10.1016/j.jhazmat.2018.09.031   DOI
21 Kim, H.-J., Kim, Y. (2021) Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere, v.269, p.128720. doi: 10.1016/j.chemosphere.2020.128720   DOI
22 Baleeiro, A. Fiol, S., Otero-Farina, A. and Antelo, J. (2018) Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals. Appl. Geochem., v.89, p.129-137. doi: 10.1016/j.apgeochem.2017.12.003   DOI
23 Komarek, M., Antelo, J., Kralova, M., Veselska, V., Cihalova, S., Chrastny, V., Ettler, V., Filip, J., Yu, Q., Fein, J.B. and Koretsky, C.M. (2018) Revisiting models of Cd, Cu, Pb, and Zn adsorption onto Fe(III) oxides. Chem. Geol., v.493, p.189-198. doi: 10.1016/j.chemgeo.2018.05.036   DOI
24 Lee, J.E. and Kim, Y. (2008) A quantitative estimation of factors affecting pH changes using simple geochemical data from acid mine drainage. Environ. Geol., v.55, p.65-75. doi: 10.1007/s00254-007-0965-6   DOI
25 Paikaray, S., Gottlicher, J. and Peiffer, S. (2011) Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway. Chem. Geol., v.283, p.134-142. doi: 10.1016/j.chemgeo.2010.08.011   DOI
26 Yoon, Y.J., Lee, J.E., Bang, S.J., Baek, Y.D. and Kim, Y. (2018) Behaviors of trace elements caused by the precipitation of minerals in acid mine drainage. J. Miner. Soc. Korea, v.31, p.173-182. doi: 10.9727/jmsk.2018.31.3.173   DOI
27 Burton, E.D., Bush, R.T., Sullicvan, L.A. and Mitchell, D.R.G. (2008) Schwertmannite transformation to geothite vis the Fe(II) pathway: Reaction rates and implications for iron-sulfide formation. Geochim. Cosmochim. Acta, v.72, p.4551-4564. doi: 10.1016/j.gca.2008.06.019   DOI
28 Regenspurg, S., Brand, A. and Peiffer, S. (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim. Cosmochim. Acta, v.68, p.1185-1197. doi: 10.1016/j.gca.2003.07.015   DOI
29 Schroth, A.W. and Parnell, R.A. (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Appl. Geochem., p.20, v.907-917. doi: 10.1016/j.apgeochem.2004.09.020   DOI
30 Shin, J.-H., Park, J.-Y., Kim, J.-W., Ju, J.-Y., Hwang, S.-H., Kim, Y., Park, C., Baek, Y. (2022) Mineral precipitation and the behavioral changes of trace elements in Munkyeong coal mine drainage. Korean J. Mineral. Petrol., v.35, p.355-365.
31 Swedlund, P., Webster, J.G. and Miskelly, G.M. (2009) Goethite adsorption of Cu(II), Pb(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex. Geochim. Cosmochim. Acta, v.73, p.1548-1562. doi: 10.1016/j.gca.2008.12.007   DOI
32 Acero, P., Ayora C., Torrento, C. and Nieto, J.M. (2006) The behavior of trace metals during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta, v.70, p.4130-4139. doi: 10.1016/j.gca.2006.06.1367 Asta, M.P., Ayora, C., Roman-Ross, G., Cama, J., Acero, P., Gault,   DOI
33 Zhang, Z., Bi, X., Li, X., Zhao, Q. and Chen, H. (2018) Schwertmannite: occurrence, properties, synthesis and application in environmental remediation. RSC Advances, v.8, p.33583-33599. doi: 10.1039/C8RA06025H   DOI
34 Zhao, H., Xia, b., Qin, J. and Zhang, J. (2012) Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: A case study in Dabaoshan Mine, China. J. Environ. Sci., v.24, p.979-989. doi: 10.1016/S1001-0742(11)60868-1   DOI
35 Sanchez-Rodas, D., Gomez-Ariza, J.L., Giraldez, I., Velasco, A. and Morales, E. (2005) Arsenic speciation in river and estuarine waters from southwest Spain. Sci. Total Environ., v.345, p.207-217. doi: 10.1016/j.scitotenv.2004.10.029   DOI
36 Schwertmann, U., Cambier, P., and Murad, E. (1985) Properties of goethites of varying crystallinity. Clays Clay Min., v.33, p.369-378. doi: 10.1346/CCMN.1985.0330501   DOI
37 Schwertmann U. and Bigham J.M. and Murad E. (1995) The first occurrence of schwertmannite in a natural stream environment. European J. Miner., v.7, p.547-552. doi: 10.1127/ejm/7/3/0547   DOI
38 Stiers, W. and Schwertmann, U. (1985) Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta, v.49, p.1909-1911. doi: 10.1016/0016-7037(85)90085-7   DOI
39 Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta, v.60, p.2111-2121. doi: 10.1016/0016-7037(96)00091-9   DOI
40 Bigham, J.M., Carlson. L. and Murad. E. (1994) Schwertmannite, a new iron oxyhydroxysulfate from Pyhasalmi Finland and other localities. Mineral. Mag., v.58, p.641-648.   DOI
41 Burton, E.D., Johnston, S.G., Watling, K., Bush, R.T., Keene, A.F. and Sullivan, L.A. (2010) Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Environ. Sci. Technol., v.44, p.2016-2021. doi: 10.1021/es903424h   DOI