DOI QR코드

DOI QR Code

Mineral Precipitation and the Behavioral Changes of Trace Elements in Munkyeong Coal Mine Drainage

문경 석탄광 배수의 광물 침전 및 미량 원소의 거동 변화

  • Shin, Ji-Hwan (School of Earth System Sciences, Kyungpook National University) ;
  • Park, Ji-Yeon (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Ji-Woo (School of Earth System Sciences, Kyungpook National University) ;
  • Ju, Ji-Yeon (School of Earth System Sciences, Kyungpook National University) ;
  • Hwang, Su-Hyeon (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University) ;
  • Park, Changyun (School of Earth System Sciences, Kyungpook National University) ;
  • Baek, YoungDoo (Department of Biomedical Laboratory Science, Daegu Health College)
  • 신지환 (경북대학교 지구시스템과학부) ;
  • 박지연 (경북대학교 지구시스템과학부) ;
  • 김지우 (경북대학교 지구시스템과학부) ;
  • 주지연 (경북대학교 지구시스템과학부) ;
  • 황수현 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부) ;
  • 박창윤 (경북대학교 지구시스템과학부) ;
  • 백영두 (대구보건대학교 임상병리학과)
  • Received : 2022.07.26
  • Accepted : 2022.08.09
  • Published : 2022.09.30

Abstract

Precipitation and phase transition of iron minerals in mine drainage greatly affect the behavior of trace elements. However, the precipitation of ferrihydrite, one of the major iron minerals precipitated in drainage, and the related behavior of trace elements have hardly been studied. In this study, the effects of pH change and time on mineral precipitation characteristics in mine drainage from the Munkyeong coal mine were investigated, and the behavioral changes of trace elements related to the precipitation of these minerals were studied. In the case of precipitated mineral phases, goethite was observed at pH 4, and 2-line ferrihydrite mixed with small amount of 6-line ferrihydrite was mainly identified at pH 6 or higher. In addition, it was observed that the precipitation of calcite additionally increased as the pH increased in the samples at pH 6 or higher. The occurrence of goethite was probably due to the phase change of initially precipitated ferrihydrite within a short time under the influence of low pH. Our results showed that the concentration of trace elements was strongly influenced by pH and time. With increasing time, Fe concentration in the drainage showed a abrupt decrease due to the precipitation of iron minerals, and the concentration of As existing as oxyanions in the drainage, also decreased rapidly like Fe regardless of the pH values. This decrease in As concentration was mainly due to co-precipitation with ferrihydrite, and also partly to surface adsorption on goethite at low pH in drainage. Contrary to this observation, the concentration of other trace elements, such as Cd, Co, Zn, and Ni was greatly affected by the pH regardless of the mineral species. The lower the pH value, the higher the concentration of these trace elements were observed in the drainage, and vice versa at higher pH. These results indicate that the behavior of trace elements present as cations is more greatly affected by the mineral surface charge influenced by the pH values than the type of the precipitated mineral.

광산배수에서 일어나는 철광물의 침전과 상전이는 배수 내 미량 원소의 거동에 매우 중요한 영향을 미친다. 그러나 주로 침전되는 철광물 중 하나인 페리하이드라이트의 침전과 이와 연관된 배수 내 미량원소의 거동은 거의 연구된 적이 없다. 본 연구는 문경 석탄광에서 발생하는 광산배수에서 pH 변화와 시간에 따른 광물침전 특성을 알아보고 이러한 광물의 침전과 연관된 미량원소의 거동 변화를 연구하였다. 침전되는 광물의 경우 pH 4에서는 침철석이 관찰되었고 pH 6 이상에서는 일부 6-line 페리하이드라이트가 혼재하는 2-line 페리하이드라이트가 주로 동정되었다. 또한 pH 6 이상의 시료에서는 pH가 증가할수록 방해석의 침전이 추가적으로 증가하는 것이 관찰되었다. 침철석의 경우 초기에 배수 내에서 페리하이드라이트로 침전된 후 낮은 pH의 영향으로 이 광물이 짧은 시간 내에 침철석으로 상전이 되었을 것으로 생각된다. 배수 내 미량 원소의 농도는 pH와 시간에 큰 영향을 받고 있음을 보여준다. 시간에 따라 배수 내의 Fe는 철광물의 침전에 의하여 급격한 농도의 감소를 보였는데 배수 내 산화음이온으로 존재하는 As의 경우도 pH 값에 상관없이 Fe와 같이 급격한 농도의 감소를 보였다. 이러한 As의 농도 감소는 주로 페리하이드라이트와의 공침에 의한 것으로 여겨지며 낮은 pH의 배수에서는 침철석의 표면 흡착에 의한 것으로 생각된다. 이와는 달리 Cd, Co, Zn, Ni 등의 미량원소의 농도는 광물의 종류에 상관없이 pH에 큰 영향을 받으며 pH 값이 낮을수록 배수 내 높은 농도로 존재하였고 pH가 증가할수록 그 농도는 낮아졌다. 이러한 결과는 양이온으로 존재하는 미량원소의 거동의 경우 광물의 종류보다 pH에 따른 광물 표면의 전하 값에 더 큰 영향을 받고 있음을 지시한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2022R1A2C1003884).

References

  1. Antelo, J., Arce, F. and Fiol, S., 2015, Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chemical Geology, 410, 53-62. https://doi.org/10.1016/j.chemgeo.2015.06.011
  2. Bigham, J.M., Carlson, L. and Murad, E., 1994, Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine, 58, 641-648. https://doi.org/10.1180/minmag.1994.058.393.14
  3. Boland, D.D., Collins, R.N., Miller, C.J., Glover, C.J. and Waite, T.D., 2014, Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environmental Science & Technology, 48, 5477-5485. https://doi.org/10.1021/es4043275
  4. Burgos, W.D., Borch, T., Troyer, L.D., Luan, F., Larson, L.N., Brown, J.F., Lambson, J. and Shimizu, M., 2012, Schwertmannite and Fe oxide formed by biological low-pH Fe(II) oxidation versus abiotic neutralization: impact on trace metal sequestration, Geochimica et Cosmochimica Acta, 76, 29-44. https://doi.org/10.1016/j.gca.2011.10.015
  5. Burleson, D.J. and Penn, R.L., 2006, Two-step growth of goethite from ferrihydrite. Langmuir, 22, 402-409. https://doi.org/10.1021/la051883g
  6. Coggon, M., Becerra, C.A., Nusslein, K., Miller, K., Yuretich, R. and Ergas, S.J., 2012, Bioavailability of jarosite for stimulating acid mine drainage attenuation, Geochimica et Cosmochimica Acta, 78, 65-76. https://doi.org/10.1016/j.gca.2011.11.030
  7. Cornell, R.M., Giovanoli, R., and Schindler, P.W., 1987, Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays and Clay Minerals, 35, 21-28. https://doi.org/10.1346/CCMN.1987.0350103
  8. Cornell, R.M. and Schwertmann, U., 2003, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd ed., Wiley-VCH, Weinheim, Germany.
  9. Cudennec, Y. and Lecerf, A., 2006, The transformation of ferrihydrite into goethite or hematite, revisited. Journal of Solid State Chemistry, 179, 716-722. https://doi.org/10.1016/j.jssc.2005.11.030
  10. Das, S., Hendry, M.J. and Essilfie-Dughan, J., 2013, Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Applied Geochemistry, 28, 185-193. https://doi.org/10.1016/j.apgeochem.2012.10.026
  11. Jonsson, J., Persson, P., Sjoberg, S. and Lovgren, L., 2005, Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry, 20, 179-191. https://doi.org/10.1016/j.apgeochem.2004.04.008
  12. Kim, H.-J. and Kim, Y., 2021, Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere, 269, 128720. https://doi.org/10.1016/j.chemosphere.2020.128720
  13. Kim, Y., 2015, Mineral phases and mobility of trace metals in white aluminum precipitates found in acid mine drainage. Chemosphere, 119, 803-811. https://doi.org/10.1016/j.chemosphere.2014.08.034
  14. Kim, Y., 2018, Effects of different oxyanions in solution on the precipitation of jarosite at room temperature. Journal of Hazardous Materials, 353, 118-126. https://doi.org/10.1016/j.jhazmat.2018.04.016
  15. Kumpulainen, S., Carlson, L. and Raisanen, M.L., 2007, Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry, 22, 760-777. https://doi.org/10.1016/j.apgeochem.2006.12.016
  16. Lee, G., Bigham, J.M. and Faure, G., 2002, Removal of trance metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining Distract, Tennessee. Applied Geochemistry, 17, 569-581. https://doi.org/10.1016/S0883-2927(01)00125-1
  17. Liu, H., Li, P., Zhu, M., Wei, Yu. and Sun, Y., 2007, Fe(II)-induced transformation from ferrihydrite to lepodocrosite and goethite. Journal of Solid State Chemistry, 180, 2121-2128. https://doi.org/10.1016/j.jssc.2007.03.022
  18. Liu, J., Zhu, R., Xu, T., Xu, Y., Ge, F., Xi, Y., Zhu, J. and He, H., 2016, Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite. Chemosphere, 144, 1148-1155. https://doi.org/10.1016/j.chemosphere.2015.09.083
  19. Mamun, A.Al., Morita, M., Matsuoka, M. and Tokoro, C., 2017, Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution. Journal of Hazardous Materials, 334, 142-149. https://doi.org/10.1016/j.jhazmat.2017.03.058
  20. Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L. and Parise, J.B., 2007, The structure of ferrihydrite, a nanocrystalline material. Science, 316, 1726-1729. https://doi.org/10.1126/science.1142525
  21. Parks, G.A., 1990, Surface energy and adsorption at mineral-water interfaces: An introduction. In: Hochella MF Jr, White AF, editors. Mineral-water interface geochemistry. Reviews in Mineralogy, 23, Washington DC: Mineralogical Society of America, p.133-175.
  22. Park, J.H., Han Y.-S. and Ahn, J.S., 2016, Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Research, 106, 295-303. https://doi.org/10.1016/j.watres.2016.10.006
  23. Ryu, J.-G. and Kim, Y., 2022, Mineral transformation and dissolution of jarosite coprecipitated with hazardous oxyanions and their mobility changes. Journal of Hazardous Materials, 427, 128283. https://doi.org/10.1016/j.jhazmat.2022.128283
  24. Schwertmann, U. and Fischer, W.R., 1973, Natural "amorphous" ferric hydroxide. Geoderma, 10, 237-247. https://doi.org/10.1016/0016-7061(73)90066-9
  25. Schwertmann, U. and Murad, E., 1983, Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals, 31, 277-284. https://doi.org/10.1346/CCMN.1983.0310405
  26. Schwertmann, U., Stanjek, H. and Becher, H.H., 2004, Longterm in vitro transformation of 2-line ferrihydrite to goethite/ hematite at 4, 10, 15 and 25℃. Clay Minerals, 39, 433-438. https://doi.org/10.1180/0009855043940145
  27. Shin, J.-H., Park, Ji-Y. and Kim, Y., 2021, Mineralogical and geochemical characteristics of the precipitates in acid mine drainage of the Heungjin-Taemaek coal mine. Economic and Environmental Geology, 54, 299-308. https://doi.org/10.9719/EEG.2021.54.2.299
  28. Sparks, D.L. 2003, Environmental Soil Chemistry. 2nd ed. Academic Press, London.
  29. Vempati, R.K. and Loeppert, R.H., 1989, Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite. Clays and Clay Minerals, 37, 273-279. https://doi.org/10.1346/CCMN.1989.0370312
  30. Yoon, Y.J., Lee, J.E., Bang, S.J., Baek, Y.D. and Kim, Y., 2018, Behaviors of trace elements caused by the precipitation of minerals in acid mine drainage. Journal of the Mineralogical Society of Korea, 31, 173-182. https://doi.org/10.9727/jmsk.2018.31.3.173