• 제목/요약/키워드: Cationic ${\alpha}-helical$ antimicrobial peptide

검색결과 7건 처리시간 0.021초

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Cho, Jang-Hee;Lee, Dong-Hee;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1299-1309
    • /
    • 2018
  • We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.

Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.759-767
    • /
    • 2017
  • Lactophoricin (LPcin), which is a part of proteose peptone isolated from bovine milk, is a cationic amphipathic ${\alpha}-helical$ antimicrobial peptide. Its truncated variants and mutated analogs were designed and their antimicrobial activities were evaluated by using various assays, like broth dilution methods and disk diffusion methods as well as hemolysis assay. Three analogs, LPcin-C8 (LPcin-YK1), LPcin-T2&6W (LPcin-YK2), and LPcin-T2&6W-C8 (LPcin-YK3), which showed better antibiotic activities than LPcin, were selected. Their secondary structures were also characterized by using CD spectropolarimetry. These three analogs of LPcin could be used as an alternative source of powerful antibacterial agents.

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Effects of the Hinge Region of Cecropin A(1-8)-Melittin 2(1-12), a Synthetic Antimicrobial Peptide on Antibacterial, Antitumor, and Vesicle-Disrupting Activity

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, KiI-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.561-566
    • /
    • 1999
  • CA(1-8)-ME(1-12) [CA-ME], composed of cecropin A(1-8) and melittin(1-12), is a synthetic antimicrobial peptide having potent antibacterial and antitumor activities with minimal hemolytic activity. In order to investigate the effects of the flexible hinge sequence, Gly-Ile-Gly, of CA-ME on antibiotic activity, CA-ME and three analogues, CA-ME1, CA-ME2, and CA-ME3, were synthesized. The Gly-Ile-Gly sequence of Ca-ME was deleted in CA-ME1 and replaced with Pro and Gly-Pro-Gly in CA-ME2 and CA-ME3, respectively. CA-ME1 and CA-ME3 showed a significant decrease in antitumor activity and phospholipid vesicle-disrupting ability. However, CA-ME2 showed similar antitumor and vesicle-disrupting activities, as compared with CA-ME. These results suggest that the flexibility or ${\beta}$-turn induced by Gly-Ile-Gly or Pro in the central part of CA-ME may be important in the electrostatic interaction of the N-terminus cationic ${\alpha}$-helical region with the cell membrane surface and the hydrophobic interaction of the C-terminus amphipathic ${\alpha}$-helical region with the hydrophobic acyl chains in the cell membrane. CA-ME3 exhibited lower antitumor and vesicle-disrupting activities than CA-ME and CA-ME2. This result suggests that the excessive ${\beta}$-turn structure caused by the Gly-Pro-Gly sequence in CA-ME3 seems to interrupt ion channel/pore formation in the lipid bilayer. We concluded that the appropriate flexibility or bilayer. We concluded that the appropriate flexibility or ${\beta}$-turn structure provided by the central hinge is responsible for the effective antibiotic activity of the antimicrobial peptides with the helix-hinge-helix structure.

  • PDF

Studies of Tertiary Structures of Mastoparan B and Alanine Analogues by NMR Spectroscopy

  • Kyeunghee Yu;Kang, Shin-Won;Park, Nam-Gyu;Kim, Yangmee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.33-33
    • /
    • 1999
  • Mastoparan B (MP-B), an antimicrobial cationic tetradecapeptide amide isolated from the venom of the hornet Vespa basalis, is an amphiphilic ${\alpha}$-helical peptide. In order to study the relationship between the structure and biological activity, we used the three analogues by replacing amino acids with alanine (4LysAla: 4MP-B, 12-LYsAla: 12MP-B, 9TrpAla: 9Mp-B).(omitted)

  • PDF

항균성 펩타이드인 mastoparan B의 살조효과 (The Algicidal Effect of Antimicrobial Peptide, Mastoparan B)

  • 서정길;김찬희;배윤정;문호성;김근용;박희연;윤호동;김창훈;변대석;홍용기;박남규
    • 한국어병학회지
    • /
    • 제16권3호
    • /
    • pp.193-201
    • /
    • 2003
  • Mastoparan B (MPB)는 벌독으로부터 정제된 양친매성 $\alpha$-helical 구조를 취하면서 14개의 아미노산 잔기로 구성된 염기성 항균성 펩타이드로서 여러가지 생물막과 작용한다. 본 연구에서는 우리 나라 연안의 적조 (HABs, harmful algal blooms)를 일으키는 4종의 적조생물 (Alexandrium tamarense, Chattonella marina, Cochlodinium polykrikoides 및 Gymnodinium catenatum)에 대한 MPB의 살조효과를 조사하였다. MPB의 4종의 적조생물에 대한 살조효과는 31.3 $\mu{g}$/mL부터 500 $\mu{g}$/mL에서 세포의 lysis 또는 ecdysis와 같은 형태로 현미경으로 관찰할 수 있었다. 또한 MPB는 C. marina 및 C. polykrikorides에 대해서 A. tamarense와 G. catenatum보다 더욱 강한 살조효과를 나타내었다. 이러한 MPB의 HABs에 대한 살조효과연구는 새로운 살조물질을 개발하기 위한 자료가 될 것으로 생각된다.

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

  • Lee, Jaeho;Lee, Daeun;Choi, Hyemin;Kim, Ha Hyung;Kim, Ho;Hwang, Jae Sam;Lee, Dong Gun;Kim, Jae Il
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.625-630
    • /
    • 2014
  • Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's ${\alpha}$-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's ${\alpha}$-helical region is highly homologous to those of other insect defensins.