Browse > Article
http://dx.doi.org/10.4014/jmb.1805.05001

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin  

Kim, Ji-Sun (Department of Chemistry, Hankuk University of Foreign Studies)
Jeong, Ji-Ho (Department of Chemistry, Hankuk University of Foreign Studies)
Cho, Jang-Hee (Biomaterial Research Center)
Lee, Dong-Hee (Biomaterial Research Center)
Kim, Yongae (Department of Chemistry, Hankuk University of Foreign Studies)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.8, 2018 , pp. 1299-1309 More about this Journal
Abstract
We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.
Keywords
Cationic ${\alpha}-helical$ antimicrobial peptide; antimicrobial activity; hemolysis; natural preservatives; therapeutic additives;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Masatoma M, Yasunori T, Yuji O, Katsunori M, Aya S, Hajime U. 2001. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett. 500: 56-59.   DOI
2 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
3 Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, et al. 2013. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. (73): e50166. doi: 10.3791/50166.   DOI
4 Molly FC, Sean WD, Mark SW, Colleen MS, Scott AS, Don RP, et al. 2000. Standard practice for assessment of hemolytic properties of materials. American Society for Testing of Materials. ASTM F756-00. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/F756-00.htm
5 Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250.   DOI
6 Liu Y, Luo J, Xu C, Ren F, Peng C, Wu G, Zhao J. 2000. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol. 122: 1015-1024.   DOI
7 Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, et al. 2002. Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. USA 99: 12628-12632.   DOI
8 Hancock RE, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557.   DOI
9 Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.   DOI
10 Rydlo T, Miltz J, Mor A. 2006. Eukaryotic antimicrobial peptides: promises and premises in food safety. J. Food Sci. 71: R125-R135.   DOI
11 Lopez-Meza JE, Ochoa-Zarzosa A, Barboza-Corona JE, Bideshi DK. 2015. Antimicrobial peptides: current and potential applications in biomedical therapies. Biomed. Res. Int. 2015: 367243.
12 Rahnamaeian M, Vilcinskas A. 2015. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl. Microbiol. Biotechnol. 99: 8847-8855.   DOI
13 Jeong JH, Kim JS, Choi SS, Kim Y. 2016. NMR structural studies of antimicrobial peptides: LPcin analogs. Biophys. J. 110: 423-430.   DOI
14 Kenshi Y, Gallo RL. 2008. Antimicrobial peptides in human skin disease. Eur. J. Dermatol. 18: 11-21.
15 Bardan A, Nizet, Gallo RL. 2004. Antimicrobial peptides and the skin. Expert. Opin. Biol. Ther. 4: 543-549.   DOI
16 Park TJ, Kim JS, Choi SS, Kim Y. 2009. Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expr. Purif. 65: 23-29.   DOI
17 Park TJ, Kim JS, Ahn HC, Kim Y. 2011. Solution and solidstate NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. Biophys. J. 101: 1193-1201.   DOI
18 Kim JS, Jeong JH, Kim KS, Kim Y. 2015. Optimized expression and characterization of antimicrobial peptides, LPcin analogs. Bull. Korean Chem. Soc. 36: 1148-1154.   DOI
19 Cipakova I, Gasperik J, Hostinova E. 2006. Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein Expr. Purif. 45: 269-274.   DOI
20 Sharpe S, Yau WM, Tycko R. 2005. Expression and purification of a recombinant peptide from the Alzheimer's ${\beta}$-amyloid protein for solid-state NMR, protein expression and purification. Protein Expr. Purif. 42: 200-210.   DOI
21 Greenfield NJ. 2006. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1: 2876-2890.
22 Kim JS, Park TJ, Kim Y. 2009. Optimized Methods for purification and NMR measurement of antibacterial peptide, bovine lactophoricin, J. Korean Magn. Reson. Soc. 13: 96-107.   DOI
23 Gopal R, Park JS, Seo CH, Park Y. 2012. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int. J. Mol. Sci. 13: 3229-3244.   DOI
24 Zasloff M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84: 5449-5453.   DOI
25 Sovadinova I, Palermo EF, Urban M, Mpiga P, Caputo GA, Kuroda K. 2011. Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers 3: 1512-1532.   DOI
26 Ibrahim HR, Yamada M, Matsushita K, Kobayashi R, Kato A. 1994. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its Cterminus. J. Biol. Chem. 269: 5059-5063.
27 Hancock RE, Falla T, Brown MH. 1995. Cationic antibacterial peptides. Adv. Microb. Physiol. 37: 135-75.
28 Piers KL, Brown MH, Hancock RE. 1994. Improvement of outer membrane-permeabilization and lipopolysaccharidebinding activities of an antimicrobial cationic peptide by Cterminal modification. Antimicrob. Agents Chemother. 38: 2311-2316.   DOI
29 Odell EW, Sarra R, Foxworthy M, Chapple DS, Evans RW. 1996. Antibacterial activity of peptides homologous to a loop region in human lactoferrin. FEBS Lett. 382: 175-178.   DOI
30 Düring K, Porsch P, Mahn A, Brinkmann O, Gieffers W. 1999. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449: 93-100.   DOI
31 Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. 1997. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochim. Biophys. Acta 1327: 119-130.   DOI
32 Son DJ, Ha SJ, Song HS, Lim Y, Yun YP, Lee JW, et al. 2003. Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappaB and Akt activation and enhancement of apoptotic protein expression. J. Pharmacol. Exp. Ther. 317: 627-634.
33 Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661.   DOI
34 Birnie AJ, Bath-Hextall FJ, Ravenscroft JC, Williams HC. 2008. Interventions to reduce Staphylococcus aureus in the management of atopic eczema. Cochrane Database Syst. Rev. (3): CD003871. doi: 10.1002/14651858.CD003871.pub2.   DOI