Browse > Article

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin  

Yang Ji-Young (Department of Advanced Fusion Technology, Bio/Molecular Informatics Center, Konkuk University)
Shin Song-Yub (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University)
Lim Shin-Saeng (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University)
Hahm Kyung-Soo (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University)
Kim Yang-Mee (Department of Advanced Fusion Technology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 880-888 More about this Journal
Abstract
Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.
Keywords
Pleurocidin; antimicrobial peptide; structure; bacterial cell selectivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Clore, G. M. and A. M. Gronenborn. 1994. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Protein Sci. 3: 372-390   DOI   ScienceOn
2 Fukuaka, Y., Y. Matsushita, S. Furukawa, T. Niidome, T. Hatakeyama, and H. Aoyagi. 2003. Structure-activity relationship of model peptides based on pleurocidin, an antibacterial peptide. Chem. Soc. Jpn 76: 1857-1861   DOI   ScienceOn
3 Hwang, Y. H., Y. I. Matsushita, K. Sugamoto, and T. Matsui. 2005. Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol. 15: 1106-1110   과학기술학회마을
4 Lee, D. G., Z. Z. Jin, C. Y. Maeng, S. Y. Shin, M. Y. Seo, K. L. Kim, and K. S. Hahm. 1999. Antifungal mechanism of antifungal peptide derived from cecropin A(1-8)-melittin(1-12) hybrid against Aspergillus fumigatus. J. Microbiol. Biotechnol. 9: 168-172
5 Lee, D. G., S. Y. Shin, S. G. Lee, K. L. Kim, M. K. Lee, and K. S. Hahm. 1997. Antifungal activities of magainin-2 hybrid peptides against Trichosporon beigelii. J. Microbiol. Biotechnol. 7: 49-51
6 Macura, S. and R. R. Ernst. 1980. Elucidation of crossrelaxation in liquids by two-dimensional NMR spectroscopy. Mol. Phys. 41: 95-117   DOI   ScienceOn
7 Marchini, D., P. C. Giordano, R. Amons, L. F. Bernini, and R. Dallai. 1993. Purification and primary structure of ceratotoxin A and B, two antibacterial peptides from the female reproductive accessory glands of the medfly Ceratitis capitata (Insecta:Diptera). Insect Biochem. Mol. Biol. 23: 591-598   DOI   ScienceOn
8 Marion, D. and K. Wuthrich. 1983. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of $^1H-^1H$ spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113: 967-974   DOI   ScienceOn
9 Matsuzaki, K., O. Murase, N. Fujii, and K. Miyajima. 1996. An antimicrobial peptide, magainin 2, induced rapid flipflop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35: 11361-11368   DOI   ScienceOn
10 Mor, A., V. H. Nguyen, A. Delfour, D. Migliore-Samour, and P. Nicolas. 1991. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 30: 8824-8830   DOI   ScienceOn
11 Patrzykat, A., C. L. Friedrich, L. Zhang, V. Mendoza, and R. E. W. Hancock. 2002. Sublethal concentrations of pleurocidinderived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46: 605-614   DOI
12 Shai, Y., D. Bach, and A. Yanovsky. 1990. Channel formation properties of synthetic pardaxin and analogues. J. Biol. Chem. 265: 20202-20209
13 Shin, S. Y., J. H. Kang, S. Y. Jang, Y. Kim, K. L. Kim, and K.-S. Hahm. 2000. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochim. Biophys. Acta 1463: 209-218   DOI   ScienceOn
14 Syvitski, R. T., I. Burton, N. R. Mattatall, S. E. Douglas, and D. L. Jakeman. 2005. Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Biochemistry 44: 7282-7293   DOI   ScienceOn
15 Wuthrich, K. 1986. NMR of Protein and Nucleic Acid. Wiley-Interscience, New York, U.S.A
16 Yu, K., K. Park, S. W. Kang, S. Y. Shin, K.-S. Hahm, and Y. Kim. 2002. Solution structure of a cathelicidin-derived antimicrobial peptide, CRAMP, as determined by NMR spectroscopy. J. Pept. Res. 60: 1-9   DOI   ScienceOn
17 Lee, D. G., S. Y. Shin, K. L. Kim, K. S. Hahm, J. H. Kang, and Z. Z. Jin. 1998. Structure-antifungal activity relationships of cecropin A-magainin2 and cecropin A-melittin hybrid peptides on pathogenic fungal cells. J. Microbiol. Biotechnol. 8: 595-600
18 Holak, T. A., A. Engstrom, P. J. Kraulis, G. Lindeberg, H. Bennich, T. A. Jones, A. M. Gronenborn, and G. M. Clore. 1988. The solution conformation of the antibacterial peptide cecropin A: A nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27: 7620-7629   DOI   ScienceOn
19 Wuthrich, K., M. Billeter, and W. Braun. 1983. Pseudostructures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 169: 949-961   DOI
20 Mao, D. and B. A. Wallace. 1984. Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry 23: 2667-2673   DOI
21 Nilges, M., G. M. Clore, and A. M. Gronenborn. 1988. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometrydynamical simulated annealing calculations. FEBS Lett. 229: 317-324   DOI   ScienceOn
22 Saint, N., H. Cadiou, Y. Bessin, and G. Molle. 2002. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta 1564: 359-364   DOI   ScienceOn
23 Bax, A. and D. G. Davis. 1985. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65: 355-360
24 Sawai, M. V., A. J. Waring, W. R. Kearney, P. B. McCray, Jr., W. R. Forsyth, R. I. Lehrer, and B. F. Tack. 2002. Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Eng. 15: 225-232   DOI
25 Bax, A. and D. G. Davis. 1985. Practical aspects of twodimensional transverse NOE spectroscopy. J. Magn. Reson. 63: 207-213
26 Oh, S. U., B. S. Yun, S. J. Lee, and I. D. Yoo. 2005. Structures and biological activities of novel antibiotic peptaibols neoatroviridins A-D from Trichoderma atroviride F80317. J. Microbiol. Biotechnol. 15: 384-388   과학기술학회마을
27 Cole, A. M., P. Weis, and G. Diamond. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013   DOI   ScienceOn
28 Kim, H., S. J. Kim, S. N. Park, and J. W. Oh. 2004. Antiviral effect of amphotericin B on Japanese encephalitis virus replication. J. Microbiol. Biotechnol. 14: 121-127   DOI   ScienceOn
29 Kuszewski, J., M. Nilges, and A. T. Brünger. 1992. Sampling and efficiency of metric matrix distance geometry: A novel partial metrization algorithm. J. Biomol. NMR 2: 33-56   DOI
30 Wishart, D. S., B. D. Sykes, and F. M. Richards. 1992. The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31: 1647-1651   DOI
31 Cole, A. M., R. O. Darouiche, D. Legarda, N. Connell, and G. Diamond. 2000. Characterization of a fish antimicrobial peptide: Gene expression, subcellular localization, and spectrum of activity. Antimicrob. Agents Chemother. 44: 2039-2045   DOI
32 Baxter, N. J. and M. P. Williamson. 1997. Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 9: 359-369   DOI   ScienceOn
33 Derome, A. and M. Williamson. 1990. Rapid-pulsing artifacts in double-quantum-filtered COSY. J. Magn. Reson. 88: 177-185
34 Muller, L. 1987. P.E.COSY, a simple alternative to E.COSY, J. Magn. Reson. 72: 191-197
35 Oh, D., S. Y. Shin, S. Lee, J. H. Kang, S. D. Kim, P. D. Ryu, K.-S. Hahm, and Y. Kim. 2000. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39: 11855-11864   DOI   ScienceOn
36 Brunger, A. T. 1993. X-PLOR Manual, Version 3.1. Yale University, New Haven, CT
37 Clore, G. M., A. M. Gronenborn, M. Nilges, and C. A. Ryan. 1987. Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26: 8012-8023   DOI   ScienceOn
38 Clore, G. M. and A. M. Gronenborn. 1989. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. Mol. Biol. 24: 479-564   DOI
39 Jam, P. P., J. Y. Je, H. G. Byun, S. H. Moon, and S. K. Kim. 2004. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J. Microbiol. Biotechnol. 14: 317-324   DOI   ScienceOn
40 De Kroon, A. I., M. W. Soekarjo, J. De Gier, and B. De Kruijff. 1990. The role of charge and hydrophobicity in peptide-lipid interaction: A comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. Biochemistry 29: 8229-8240   DOI   ScienceOn
41 Lim, S. S., Y. M. Song, M. H. Jang, Y. Kim, K.-S. Hahm, and S. Y. Shin. 2004. Effects of two glycine residues in positions 13 and 17 of pleurocidin on structure and bacterial cell selectivity. Protein Pept. Lett. 11: 35-40   DOI   ScienceOn
42 Lee, H. W., J. W. Choi, H. W. Kim, D. P. Han, W. S. Shin, and D. H. Yi. 1997. A peptide antibiotic AMRSA1 active against multidrug-resistant Staphylococcus aureus produced by Streptomyces sp. HW-003. J. Microbiol. Biotechnol. 7: 402-408