• Title/Summary/Keyword: Cathode catalyst

Search Result 147, Processing Time 0.028 seconds

Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting (고분자 전해질막 수전해의 산화 전극용 귀금속 촉매의 연구 동향)

  • Bu, Jong Chan;Jung, Won Suk;Lim, Da Bin;Shim, Yu-Jin;Cho, Hyun-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2022
  • The carbon-neutrality induced by the global warming is important for the modern society. Hydrogen has been received the attention as a new energy source to replace the fossil fuels. Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

The Structure Improvement of Microbial Fuel Cell to Generate Electricity from swine wastewater (가축분뇨를 이용하는 미생물연료전지 개발을 위한 구조개선)

  • Jang, Jaekyung;Sun, RyouYoung;Lee, SungHyoun;Kim, JongGoo;Kang, YounKoo;Kim, Young Hwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.252.1-252.1
    • /
    • 2010
  • These studies convert to useful electricity from swine wastewater and to treat this wastewater. In order to operate the microbial fuel cell(MFC) for the swine wastewater, the anode volume of MFCs was scaled up with 5L in the vacant condition. Graphite felts and low-priced mesh stainless-less as electrode had mixed up and packed into the anode compartment. The meshed stainless-less electrode could also be acted the collector of electron produced by microorganisms in anode. For a cathode compartment, graphite felt loaded Pt/C catalyst was used. Graphite felt electrode embedded in the anode compartment was punched holds at regular intervals to prevent occurred the channeling phenomenon. The sources of seeding on microbial fuel cell was used a mixture of swine wastewater and anaerobic digestion sludge(1:1). It was enriched within 6 days. Swine wastewater was fed with 53.26 ml/min flow rate. The MFCs produced a current of about 17 mA stably used swine wastewater with $3,167{\pm}80mg/L$. The maximum power density and current density was 680 $mW/m^3$ and 3,770 $mA/m^3$, respectively. From these results it is showed that treatment of swine wastewater synchronizes with electricity generation using modified low priced microbial fuel cell.

  • PDF

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

  • Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.95-105
    • /
    • 2015
  • In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.

Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells (Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도)

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Oxygen Reduction Reaction Evaluation of Synthesized 20% Pt/C with Beat Treatment by Chemical Reduction Method (화학환원법(化學還元法)을 이용(利用)해 제조(製造)한 20% Pt/C 캐소드 촉매(觸媒)의 열처리(熱處理)에 따른 산소환원반응(酸素還元反應) 평가(評價))

  • Kim, Jin-Hwan;Kang, Suk-Min;Thube, Dilip.R.;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.12-18
    • /
    • 2009
  • The 20% Pt/C catalysts were synthesized using the chemical reduction method for polymer electrolyte fuel cell cathode and were heat-treated in the temperature range from 300 to $600^{\circ}C$. The oxygen reduction reaction of the catalysts was evaluated using the electrochemical measurement. The oxygen reduction reaction of the heat-treated Pt/C at $300^{\circ}C$ had high catalytic activity and the oxygen reduction reaction current of that was 2 times than that of non-heat treatment catalyst. It is considered that the change of the crystallinity and particle size by heat treatment could increase the catalytic activity.

The Study on In-situ Measurement of Hydrogen Permeability through Polymer Electrolyte Membranes for Fuel Cells (연료전지용 고분자전해질막의 실시간 수소 투과도 측정법 연구)

  • Lim, Yoon Jae;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2016
  • Polymer electrolyte membranes (PEMs) are key components to determine electrochemical fuel cell performances, in addition to electrode materials. The PEMs need to satisfy selective transport behaviors to small molecules including gases and protons; the PEMs have to transport protons as fast as possible, while they should act as hydrogen barriers, since the permeated gas induces the thermal degradation of cathode catalyst, resulting in rapid electrochemical reduction. To date, limited tools have been used to measure how fast hydrogen gas permeates through PEMs (e.g., Constant volume/variable Pressure (time-lag) method). However, most of the measurements are conducted under vacuum where PEMs are fully dried. Otherwise, the obtained hydrogen permeance is easily changeable, which causes the measurement errors to be large. In this study, hydrogen permeation properties through Nafion212 used as a standard PEM are evaluated using an in-situ measurement system in which both temperature and humidity are controlled at the same time.

Effect of Gas Diffusion Layer on La0.8Sr0.2CoO3 Bifunctional Electrode for Oxygen Reduction and Evolution Reactions in an Alkaline Solution (알칼리용액에서 산소환원 및 발생반응에 대한 La0.8Sr0.2CoO3 전극의 기체확산층 영향)

  • LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;RIM, HYUNG-RYUL;LEE, HONG-KI;SHIM, JOONGPYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2016
  • Various commercially available gas diffusion layers (GDLs) from different manufacturers were used to prepare an air electrode using $La_{0.8}Sr_{0.2}CoO_3$ perovskite (LSCP) as the catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline solution. Various GDLs have different physical properties, such as porosity, conductivity, hydrophobicity, etc. The ORR and OER of the resulting cathode were electrochemically evaluated in an alkaline solution. The electrochemical properties of the resulting cathodes were slightly different when compared to the physical properties of GDLs. Pore structure and conductivity of GDLs had a prominent effect and their hydrophobicities had a minor effect on the electrochemical performances of cathodes for ORR and OER.

Numerical Study on the Effect of Gas Diffusion Layer (GDL) Properties in Cathode on the Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) (고분자 전해질 연료전지내의 양극 기체확산층 물성 변화가 전지성능에 미치는 영향에 관한 전산해석 연구)

  • Chun, Jeong Hwan;Jo, Dong Hyun;Lee, Ji Young;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.556-561
    • /
    • 2012
  • In this study, the effect of properties of gas diffusion layer (GDL) on the performance of polymer electrolyte membrane fuel cell (PEMFC) was investigated using the numerical simulation. The multi-phase mixture ($M^2$) model was used to calculate liquid water saturation and oxygen concentration in GDL. GDL properties, which were contact angle, porosity, gas permeability and thickness, were changed to investigate the effect of GDL properties on the performance of PEMFC. The results demonstrated that performance of PEMFC was increased with increasing contact angle and porosity of GDL, but decreased with increasing thickness of GDL. The liquid water saturation was decreased but oxygen concentration was increased at the GDL-catalyst layer interface, because the mass transfer resistance decreased as the porosity and contact angle increased. On the other hands, as the thickness of GDL increased, pathway for liquid water and oxygen gas became longer, and then mass transfer resistance increased. For this reason, performance of PEMFC decreased with increasing thickness of GDL.

A Numerical Study on the Internal Flow and Combustion Characteristics of the Catalytic Combustor for the 5kW MCFC Power system (5kW 급 MCFC 발전시스템 촉매연소기의 유동 및 연소 특성에 대한 수치적 연구)

  • Kim, Chong-Min;Lee, Youn-Wha;Kim, Man-Young;Kim, Hyung-Gon;Hong, Dong-Jin;Cho, Ju-Hyeong;Kim, Han-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3049-3052
    • /
    • 2008
  • MCFC(molten carbonate fuel cell) power generation system is prime candidate for the utilization of fossil based fuels to generate ultra clean power with a high efficiency. In the MCFC power plant system, a combustor performs a role to supply high temperature mixture gases for cathode and heat for reformer by using the stack off-gas of the anode which includes a high concentration of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and to avoid excessive local heating, catalytic combustor is usually used. The catalytic combustion is accomplished by the catalytic chemical reaction between fuel and oxidizer at catalyst surface, different from conventional combustion. In this study, a mathematical model for the prediction of internal flow and catalytic combustion characteristics in the catalytic combustor adopted in the MCFC power plant system is suggested by using the numerical methods. The numerical simulation models are then implemented into the commercial CFD code. After verifying result by comparing with the experimental data and calibrated kinetic parameters of catalytic combustion reaction, a numerical simulation is performed to investigate the variation of flow and combustion characteristics by changing such various parameters as inlet configuration and inlet temperature. The result show that the catalytic combustion can be effectively improved for most of the case by using the perforated plate and subsequent stable catalytic combustion is expected.

  • PDF

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell (고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Choi, Changkun;Joh, Han-Ik;Park, Jong Jin;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.