Browse > Article
http://dx.doi.org/10.5229/JECST.2015.6.3.95

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells  

Ponmani, K. (Department of Chemistry, Presidency College)
Kiruthika, S. (Department of Chemical Engineering, SRM University)
Muthukumaran, B. (Department of Chemistry, Presidency College)
Publication Information
Journal of Electrochemical Science and Technology / v.6, no.3, 2015 , pp. 95-105 More about this Journal
Abstract
In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.
Keywords
Membraneless fuel cells; Nickel; Platinum; Tin; Sodium Percarbonate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.-H. Lim, D.-H. Choi, W.-D. Lee, and H.-I. Lee, Appl. Catal. B-environ., 89, 484(2009).   DOI
2 J. Ribeiro, D.M. dos Anjos, K.B. Kokoh, C. Coutanceau, J.-M. Léger, P. Olivi, A.R. de Andrade, and G. Tremiliosi-Filho, Electrochim. Acta, 52, 6997(2007).   DOI
3 T.S. Almeida, K.B. Kokoh, and A.R. de Andrade, Int. J. Hydrogen Energy, 36, 3803(2011).   DOI
4 A. Bonesi, W.E. Triaca, and A.M. Castro Luna, Port. Electrochim. Acta, 27, 193(2009).   DOI
5 L. Jiang, L. Colmenares, Z. Jusys, G.Q. Sun, and R.J. Behm, Electrochim. Acta, 53, 377(2007).   DOI
6 S. Mukarjee, S. Srinivasan, M.P. Soriaga, and J. Mcrreen, J. Electrochem. Soc., 142, 1409(1995).   DOI
7 C. Audo, J.F. Lambert, M. Che, and B. Didillon, Catal. Today, 65, 157(2001).   DOI
8 C.G. Granqvist, and R.A. Buhrman, J. Catal., 42, 477(1976).   DOI
9 C.G. Granqvist, and R.A. Buhrman, J. Appl. Phys., 47, 2200(1976).   DOI
10 P. Ehrburger, and P.R. Walker Jr., J. Catal., 55, 63(1978).   DOI
11 R. Woods, in: A.J. Bard (Ed.), Electroanalytical Chemistry, Marcel Dekker, New York (1976).
12 A. Bonesi, G. Garaventa, W.E. Triaca, and A.M. Castro Luna, Int. J. Hydrogen Energy, 33, 3499(2008).   DOI
13 D.A.J. Rand, and R. Woods, J. Electroanal. Chem. Interfacial Electrochem., 36, 57(1972).   DOI
14 E.V. Spinace’, A.O. Neto, and M. Linardi, J. Power Sources, 129, 121(2004).   DOI
15 F. Vigier, C. Coutanceau, F. Hahn, E.M. Belgsir, and C. Lamy, J. Electroanal. Chem., 563, 81(2004).   DOI
16 A.R. Bonesi, M.S. Moreno, W.E. Triaca, and A.M. Castro Luna, Int. J. Hydrogen Energy, 35, 5999(2010).   DOI
17 E.M. Cunha, J. Ribeiro, K.B. Kokoh, and A. R. de Andrade, Int. J. Hydrogen Energy, 36, 11034(2011).   DOI
18 F.L.S. Purgato, P. Olivi, J.-M. Léger, A.R. de Andrade, G. Tremiliosi- Filho, and E.R. Gonzalez, J. Electroanal.Chem., 628, 81(2009).   DOI
19 E.M. Crabb, R. Marshall, and D. Thompsett, J. Electrochem. Soc., 147, 4440(2000).   DOI
20 F. Colmati, E. Antolini, and E.R. Gonzalez, J. Alloys Compd., 456, 264(2008).   DOI
21 E.V. Spinace’, M. Linardi, and A.O. Neto, Electrochem. Commun., 7, 365(2005).   DOI
22 V. Radmiloviae, H.A. Gasteiger, and P.N. Ross Jr., J. Catal., 154, 98(1995).   DOI
23 S. Beyhan, J.-M. Leger, and F. Kadýrgan, Appl. Catal., B: Environ., 130-131, 305(2013).   DOI
24 F. Colmati, E. Antolini, and E.R. Gonzalez, Appl. Catal. B, 73, 106(2007).   DOI
25 R.S. Jayashree, S.K. Yoon, F.R. Brushett, P.O. Lopez-Montesinos,D. Natarajan, L.J. Markoski, and P.J.A. Kenis, J. Power Sources, 195, 3569(2010).   DOI
26 K. Ponmani, S. Durga, M. Gowdhamamoorthi, S. Kiruthika, and B. Muthukumaran, Ionics, 20, 1579(2014).   DOI
27 A. Arun, M. Gowdhamamoorthi, S. Kiruthika, and B. Muthukumaran, J. Electrochem. Soc., 161, F311(2014).   DOI
28 A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang, N. S. Marinkovic, P. Liu, A. I. Frenkel, and R. R. Adzic, Nature Mater., 8, 325(2009).   DOI
29 F.A. Cotton, and G. Wilkinson, Advanced inorganic chemistry, Wiley Interscience, New York, pp. 812(1988).
30 J. Tayal, B. Rawat, and S. Basu, Int. J. Hydrogen Energy, 36, 14884(2011).   DOI
31 J. Ribeiro, D.M. dos Anjos, J.-M. Leger, F. Hahn, P. Olivi, A.R. de Andrade, G. Tremiliso-Filho, and K.B. Kokoh, J. Appl. Electrochem., 38, 653(2008).   DOI
32 T.S. Almeida, L.M. Palma, C. Morais, K.B. Kokoh, and A.R. de Andrade, J. Electrochem. Soc., 160, F965(2013).   DOI
33 A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, and E.V. Spinace, J. Power Sources, 166, 87(2007).   DOI
34 M.L. Calegaro, H.B. Suffredini, S.A.S. Machado, and L.A. Avaca, J. Power Sources, 156, 300(2006).   DOI
35 L. Jiang, G. Sun, Z. Zhou, W. Zhou, and Q. Xin, Catal. Today, 93-95, 665(2004).   DOI
36 M. Zhu, G. Sun, S. Yan, H. Li, and Q. Xin, Energy & Fuels, 23, 403(2009).   DOI
37 C. Lamy, E.M. Belgsir, and J.-M. Léger, J. Appl. Electrochem., 31, 799(2001).   DOI
38 F. Wang, Y. Zheng, and Y. Guo, Fuel cells, 6, 1100(2010).
39 L. Jiang, G. Sun, S. Sun, J. Liu, S. Tang, H. Li, B. Zhou, and Q. Xin, Electrochim. Acta, 50, 5384(2005).   DOI
40 W.J. Zhou, W.Z. Li, S.Q. Song, Z.H. Zhou, L.H. Jiang, and G.Q. Sun, J. Power Sources, 131, 217(2004).   DOI
41 M.S. Whittingham, R.F. Savinell, and T.A. Zawodzinski, Chem. Rev., 104, 4243(2004).   DOI
42 H. Bönnemann, W. Brijoux, R. Brinkmann, R. Fretzen, T. Joussen, R. Köppler, B. Korall, P. Neiteler, and J. Richter, J. Mol. Catal., 86, 129(1994).   DOI
43 E.R. Choban, L.J. Markoski, A. Wieckowski, and P.J.A. Kenis, J. Power Sources, 128, 54(2004).   DOI
44 E. Kjeang, N. Djilali, and D. Sinton, J. Power Sources, 186, 353(2009).   DOI
45 K.-W. Park, J.-W. Choi, S.-A. Lee, C. Pak, H. Chang, and Y.-E. Sung, J. Catal., 224, 236(2004).   DOI
46 J. Ribeiro, D.M. dos Anjos, J.-M. Leger, F. Hahn, P. Olivi, A.R. de Andrade, G. Tremiliso-Filho, and K.B. Kokoh, J. Appl. Electrochem., 38, 653(2008).   DOI
47 J.-H. Choi, K.-W. Park, B.-K. Kwon, and Y.-E. Sung, J. Electrochem. Soc., 150, A973(2000).
48 K.-W. Park, J.-H. Choi, B.-W. Kwon, S.-A. Lee, and Y.-E. Sung, J. Phys. Chem. B, 106, 1869(2002).   DOI
49 S.Q. Song, W.J. Zhou, Z.H. Zhou, L.H. Jiang, G.Q. Sun, and Q. Xin, et al., Int. J. Hydrogen Energy, 30, 995(2005).   DOI
50 Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, and L.M. Gan, J. Power Sources, 149, 1(2005).   DOI
51 M.L. Calegaro, H.B. Suffredini, S.A.S. Machado, and L.A. Avaca, J. Power Sources, 156, 300(2006).   DOI