DOI QR코드

DOI QR Code

Numerical Study on the Effect of Gas Diffusion Layer (GDL) Properties in Cathode on the Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC)

고분자 전해질 연료전지내의 양극 기체확산층 물성 변화가 전지성능에 미치는 영향에 관한 전산해석 연구

  • Chun, Jeong Hwan (Department of Chemical & Biological Engineering, Korea University) ;
  • Jo, Dong Hyun (Department of Chemical & Biological Engineering, Korea University) ;
  • Lee, Ji Young (Department of Chemical & Biological Engineering, Korea University) ;
  • Kim, Sung Hyun (Department of Chemical & Biological Engineering, Korea University)
  • 전정환 (고려대학교 화공생명공학과) ;
  • 조동현 (고려대학교 화공생명공학과) ;
  • 이지영 (고려대학교 화공생명공학과) ;
  • 김성현 (고려대학교 화공생명공학과)
  • Received : 2011.10.14
  • Accepted : 2011.12.07
  • Published : 2012.06.01

Abstract

In this study, the effect of properties of gas diffusion layer (GDL) on the performance of polymer electrolyte membrane fuel cell (PEMFC) was investigated using the numerical simulation. The multi-phase mixture ($M^2$) model was used to calculate liquid water saturation and oxygen concentration in GDL. GDL properties, which were contact angle, porosity, gas permeability and thickness, were changed to investigate the effect of GDL properties on the performance of PEMFC. The results demonstrated that performance of PEMFC was increased with increasing contact angle and porosity of GDL, but decreased with increasing thickness of GDL. The liquid water saturation was decreased but oxygen concentration was increased at the GDL-catalyst layer interface, because the mass transfer resistance decreased as the porosity and contact angle increased. On the other hands, as the thickness of GDL increased, pathway for liquid water and oxygen gas became longer, and then mass transfer resistance increased. For this reason, performance of PEMFC decreased with increasing thickness of GDL.

본 연구에서는 고분자형 연료전지(PEMFC) 내의 기체확산층(GDL)에서의 물질 거동 전산해석을 통하여 GDL 물성이 전지성능에 미치는 영향을 알아보았다. GDL 내에서 기상의 산소와 액상의 물의 거동을 계산하기 위하여 multi-phase mixture($M^2$) 모델을 사용하였다. GDL의 접촉각, 기공도, 기체투과도, 두께에 변화를 주며 계산을 실시하여 GDL 내에서의 물질 거동의 변화를 확인 하였고, GDL 물성이 전지성능에 미치는 영향을 파악하였다. 전산해석 결과, GDL의 접촉각과 기공도가 커지고, 두께가 얇아짐에 따라 물질전달 저항이 감소하여 GDL과 촉매층 사이의 계면에서의 물포화도가 낮아지고 산소농도는 증가하여 전지성능이 향상되는 것을 확인하였다.

Keywords

References

  1. Starz, K. A., Auer, E., Lehmann, Th. and Zuber, R., "Characteristics of Platinum-based Electrocatalysts for Mobile PEMFC Applications," J. Power Sources, 84(2), 167-172(1999). https://doi.org/10.1016/S0378-7753(99)00333-X
  2. Hussain, M. M., Dincer, I. and Li, X., "A preliminary Life Cycle Assessment of PEM Fuel Cell Powered Automobiles," Appl. Therm. Eng., 27(13), 2294-2299(2007). https://doi.org/10.1016/j.applthermaleng.2007.01.015
  3. Shimpalee, S., Beuscher, U. and Van Zee, J. W., "Analysis of GDL Flooding Effects on PEMFC Performance," Electrochim Acta, 52(24), 6748-6754(2007). https://doi.org/10.1016/j.electacta.2007.04.115
  4. Zhu, X., Sui, P. C. and Djilali, N., "Dynamic Behaviour of Liquid Water Emerging from a GDL Pore into a PEMFC Gas Flow Channel," J. Power Sources, 172(1), 287-295(2007). https://doi.org/10.1016/j.jpowsour.2007.07.024
  5. Zhan, Z., Xiao, J., Zhang, Y., Pan, M. and Yuan, R., "Gas Diffusion Through Differently Structured Gas Diffusion Layers of PEM Fuel Cells," Int. J. Hydrogen Energy, 32(17), 4443-4451(2007). https://doi.org/10.1016/j.ijhydene.2007.03.041
  6. Lu, Z., Daino, M. M., Rath, C. and Kandlikar, S. G., "Water Management Studies in PEM Fuel Cells, Part III: Dynamic Break-through and Intermittent Drainage Characteristics from GDLs with and Without MPLs," Int. J. Hydrogen Energy, 35(9), 4222-4233(2010). https://doi.org/10.1016/j.ijhydene.2010.01.012
  7. Chun, J. H., Park, K. T., Dong, H. J., Kim, S. G. and Kim, S. H., "Numerical Modeling and Experimental Study of the Influence of GDL Properties on Performance in a PEMFC," Int. J. Hydrogen Energy, 36(2), 1837-1845(2011). https://doi.org/10.1016/j.ijhydene.2010.01.036
  8. Wang, C. Y. and Cheng, P., "A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media-I. Model Development," Int. J. Heat Mass Transfer, 39(17), 3607-3618(1996). https://doi.org/10.1016/0017-9310(96)00036-1
  9. Chang, M.-H., Chen, F. and Teng, H.-S., "Effects of Two-phase Transport in the Cathode Gas Diffusion Layer on the Performance of a PEMFC," J. Power Sources, 160(1), 268-276(2006). https://doi.org/10.1016/j.jpowsour.2006.01.027

Cited by

  1. Characterization of Milled Carbon Fibers-filled Pitch-based Carbon Paper for Gas Diffusion Layer vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.262