Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.141

The Study on In-situ Measurement of Hydrogen Permeability through Polymer Electrolyte Membranes for Fuel Cells  

Lim, Yoon Jae (Energy Engineering Department, Dankook University)
Lee, Chang Hyun (Energy Engineering Department, Dankook University)
Publication Information
Membrane Journal / v.26, no.2, 2016 , pp. 141-145 More about this Journal
Abstract
Polymer electrolyte membranes (PEMs) are key components to determine electrochemical fuel cell performances, in addition to electrode materials. The PEMs need to satisfy selective transport behaviors to small molecules including gases and protons; the PEMs have to transport protons as fast as possible, while they should act as hydrogen barriers, since the permeated gas induces the thermal degradation of cathode catalyst, resulting in rapid electrochemical reduction. To date, limited tools have been used to measure how fast hydrogen gas permeates through PEMs (e.g., Constant volume/variable Pressure (time-lag) method). However, most of the measurements are conducted under vacuum where PEMs are fully dried. Otherwise, the obtained hydrogen permeance is easily changeable, which causes the measurement errors to be large. In this study, hydrogen permeation properties through Nafion212 used as a standard PEM are evaluated using an in-situ measurement system in which both temperature and humidity are controlled at the same time.
Keywords
Hydrogen crossover; Polymer electrolyte membrane; Gas chromatography; Fuel cells;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. Dunwoody and J. Leddy, "Proton exchange membranes: the view forward and back", Electrochem Soc. Interface, 14, 37 (2005).
2 D. Kim and S. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
3 J. Chen, L. S. Loo, and K. Wang, "A novel time lag method to measure the permeation of vapor-gas mixtures", J. Membr. Sep. Technol., 1, 94 (2012).
4 M. L. Perry and T. F. Fuller, "A historical perspective of fuel cell technology in the 20th century", J. Electrochem Soc., 149, S59 (2002).   DOI
5 Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, "A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research", Appl. Energy, 88, 981 (2011).   DOI
6 H. Lee, T. Kim, W. Sim, S. Kim, B. Ahn, T. Lim, and K. Park, "Pinhole formation in PEMFC membrane after electrochemical degradation and wet/dry cycling test", Korean J. Chem. Eng., 28, 487 (2011).   DOI
7 R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, and D. Wood, "Scientific aspects of polymer electrolyte fuel cell durability and degradation", Chem. Rev., 107, 3904 (2007).   DOI
8 S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015).   DOI
9 A. Collier, H. Wang, X. Z. Yuan, J. Zhang, and D. P. Wilkinson, "Degradation of polymer electrolyte membranes", Int. J. Hydrogen Energy, 31, 1838 (2006).   DOI
10 K. Broka and P. Ekdunge, "Oxygen and hydrogen permeation properties and water uptake of Nafion$^{(R)}$117 membrane and recast film for PEM fuel cell", J. Appl. Electrochem, 27, 117 (1997).   DOI
11 A. Z. Weber, "Gas-crossover and membrane-pinhole effects in polymer-electrolyte fuel cells", J. Electrochem Soc., 155, B521 (2008).   DOI
12 D. Pye, H. Hoehn, and M. Panar, "Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus", J. Appl. Polym. Sci., 20, 1921 (1976).   DOI
13 Y. Kim, J. Lee, H. Park, and Y. Lee, "Hydrogen separation of carbon molecular sieve membranes derived from polyimides having decomposable side groups", Membr. J., 14, 99 (2004).
14 S. Stern, "The "barrer" permeability unit", J. Polym. Sci. A-2: Polym. Phys., 6, 1933 (1968).   DOI
15 C. H. Lee, S. Y. Lee, Y. M. Lee, S. Y. Lee, J. W. Rhim, O. Lane, and J. E. McGrath, "Surface-fluorinated proton-exchange membrane with high electrochemical durability for direct methanol fuel cells", ACS Appl. Mater. Interfaces, 1, 1113 (2009).   DOI
16 D. R. Paul and Y. P. Yampol'skii, "Polymeric gas separation membranes", CRC press (1993).
17 F. Barbir, "PEM fuel cells: theory and practice", Academic Press, San Diego (2012).