• Title/Summary/Keyword: Catenary System

Search Result 410, Processing Time 0.034 seconds

Utilizing Technology in Measurement System for Catenary Current: - Focusing on Testing Results for Kyoungbu High-speed Line in Korea - (조가선 전류 검측 시스템의 활용기술 연구 - 고속선 경부2단계 시험결과를 중심으로 -)

  • Park, Young;Jung, Hosung;Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1465-1469
    • /
    • 2013
  • The resent developed high speed train called HEMU-430X (Highspeed Electric Multiple Unit - 430km/h eXperiment) recorded a 421.4 km/h in Kyoungbu high speed line in Korea. A verity of measurement systems are used to check the performance between pantograph and catenary system. An innovative measurement system is adopted to check the current of catenary wire in the track side during HEMU-430X test running. This paper presents the measurement results of catenary current in kyoungbu high-speed line and describe its utilizing technology in the experimental results of catenary current. In order to analyze field testing results, the current ratio between contact and catenary current have been analyzed by means of Carson-Pollaczek equation. And the current wave forms between catenary and contact wire are presented based on the simulation results.

A Catenary System Analysis for Studying the Dynamic Characteristics of a High Speed Rail Pantograph

  • Han, Chang-Soo;Park, Tong-Jin;Kim, Byung-Jin;Wang, Young-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.436-447
    • /
    • 2002
  • In this study, the dynamic response of a catenary system that supplies electrical power to high-speed trains is investigated. One of the important problems which is accompanied by increasing the speed of a high-speed rail, is the performance of stable current collection. Another problem which has been encountered, is maintaining continuous contact force between the catenary and the pantograph without loss of panhead. The dynamic analyses of the catenary based on the Finite Element Method (FEM) are performed to develop a pantograph suitable for high speed operation. The static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing the force of a constantly moving load and the contact force were calculated. It was confirmed that a catenary model is necessary to study the dynamic characteristics of the pantograph system.

Review of the Improvement Plans on Catenary Systems for Speed Increase in Gyeongbu High-Speed Line

  • Eum, Ki Young;Yun, Jangho;Lee, Kiwon;Kim, Jung Hwan
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.64-68
    • /
    • 2013
  • In recent years, the speed of a train has been recognized as one of the important factors to determine the competitiveness as a mean of transportation. In line with this, infrastructure improvements and enhancements are being made with increases in the speed of train. Accordingly, there is a need to establish plans for infrastructure improvements through a comprehensive analysis of signals, track/civil engineering, catenary and environment, etc. to improve the speed of a train of high-speed train service sections in Korea. This study proposes improvement plans for catenary systems by investigating the possibility of improvements through performance analysis of catenary equipment by speed increase based on the analysis on catenary systems in Gyeongbu high-speed line, and analysis the applicability of catenary improvements and economic feasibility.

The Dynamic Characteristics Analysis Between Pantograph and Catenary System Using Block Pulse Function (블럭펄스함수를 이용한 판토그래프와 가선시스템사이의 동특성 해석)

  • Shin, Seung-Kwon;Song, Yong-Soo;Eum, Ju-Hwan;Eum, Ki-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.748-750
    • /
    • 2004
  • The pantograph should supply the electrification equipments of a train with the current from the overhead catenary system over a broad range of speeds. For a high-speed electrical train, the dynamic interaction between the pantograph and the overhead catenary system causes the variation of the contact force. As the operational speed increases, the variation of the contact force increases. The contact force variation can cause contact losses, arcing and sparking. If the spark happens between the pantograph and the overhead catenary system, the EMI(electro magnetic interface) and noises may occur. After all, the quality of current collection is deteriorated. This paper deals with the dynamic characteristics analysis between pantograph and catenary system using block pulse function.

  • PDF

Dynamic Analysis of a Three-dimensional Catenary System Using the Finite Element Method (유한요소해석을 이용한 3 차원 전차선로의 동특성 분석)

  • Lee, Kyo-Ho;Cho, Yong-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1306-1313
    • /
    • 2009
  • Dynamic and static behaviors of a three-dimensional catenary system for a high-speed railway are analyzed by using the finite element method. Considering tensions in the contact wire and the messenger wire, we drive the equations of motion for the catenary system. These equations are for the longitudinal, transverse, vertical and torsional motions. After establishing the weak form, the weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations, a finite element computer program is developed for the static and dynamic analyses. The static deflections of the catenary system, which are important for good contact between the pantograph and the contact line, are computed when the gravity is applied. On the other hand, we analyze the natural frequencies and the corresponding natural modes of the catenary system. The dynamic responses of the system are also investigated when applying a load to the contact line. For verification of the developed finite element program, vibrations of the catenary system are measured and they are compared to computed time responses.

A Study on Reliability Analysis of Electric Railway Catenary System using FMECA (FMECA를 통한 전차선로 가선시스템의 신뢰도 분석에 관한 연구)

  • Youn, Eung-Kyu;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1618-1625
    • /
    • 2015
  • The reliability of catenary system is very important for uninterrupted train operation as it supplies electric power to train without redundant facilities. This paper provides a systematic approach to the reliability analysis of the catenary system based on FMECA procedures defined by global standards such as MIL Std 1692a and IEC 60812. Field failure data collected from the operation and maintenance of high-speed railway catenary system for 9 years are used to derive critical failure modes and to evaluate the criticality of the failure modes. Evaluation of the criticality are carried out by quantitative procedures defined by MIL Std 1692a and by criticality matrix defined by IEC 60812. FMECA results suggests that three critical failure modes should be checked carefully during maintenance work, which include strand break of dropper and voltage equalizing wire, power supply failure of feeder. Maintenance procedure of catenary system in order of importance is suggested too. These results can be applied to maintenance planning and design of catenary system to improve the reliability of electric railway system.

A Study on the Analysis and Measurement for the Elasticity of the Catenary System (전차선로 탄성도 해석 및 측정에 관한 연구)

  • 조용현;최강윤;조기조;권삼영
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1100-1105
    • /
    • 2002
  • The elasticity of the contact wire is one of important static parameters for the catenary system. This paper presents how to analyse the elasticity of the catenary system using both simple string model method and finite element method with their formula. Analysis results obtained by these two methods for KTX catenary system are compared. A measurement of the elasticity for the KTX catenary under construction which is located near Kumkang bridge is made for the comparison with the analysis results. Both a dynamic and a static methods are tried for the measurement. Because of wave propagation, the dynamic method with 5 km/h running presented an asymmetric variational pattern of the elasticity while the static method presented a symmetric pattern of the elasticity in the span. Measured elasticity using the static method is found to be a little higher than the analysis results. But, the static method can presented us a variational pattern of the elasticity in the span similar to the analysed results. Therefore, the static method can be used for evaluating the elasticity of the catenary system

  • PDF

Modelling of High-Speed Pantograph and Controller Design Using Disturbance Observer (고속 팬터그래프의 새로운 동적 모형 및 외란관측기를 이용한 제어기 설계)

  • Jo, Nam-Hoon;Lee, Kang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2233-2239
    • /
    • 2007
  • The pantograph-catenary system is one of important components for high-speed rail system that are powered electrically. Electrical power is delivered from a catenary structure to the train via a pantograph and thus it is very important to regulate the contact force between catenary and pantograph. Although a lot of research results for active pantograph have been reported, most of them have made an unrealistic assumption that the catenary displacement is constant with respect to the time. In this paper, we present a new pantograph model that regards the catenary displacement as an unknown disturbance input. Moreover, a disturbance observer based controller is proposed to remove the effect of disturbance, i.e., the catenary displacement variation. The computer simulation result shows that the substantial improvement in regulating the contact force can be achieved by the proposed controller.

A Study on a Catenary Impedance Estimation Technique using Boosting Current Compensation Based on Current Division Characteristics of an AT Feeding System

  • Jung, Hosung;Kim, Hyungchul;Chang, Sang-Hoon;Kim, Joorak;Min, Myung-Hwan;An, Tae-Pung;Kwon, Sung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1370-1376
    • /
    • 2015
  • Generally, an autotransformer(AT) feeding system consists of double tracks, up and down, with the trolley wire and feeder wire of the up and down tracks connected in the sectioning post(SP). Consequently, load current or fault current flows on two tracks based on catenary impedance characteristics, making it difficult to estimate catenary impedance accurately. This paper presents a technique for the estimation of catenary impedance using boosting current compensation based on the current division characteristics of an AT feeding system to improve the operation performance of impedance relay. To verify the technique, we model an AT feeding system through a power analysis program (PSCAD/EMTDC) and simulate various operation and fault conditions. Through the simulation, we confirmed that the proposed technique has estimated catenary impedance with a similar degree of accuracy to the actual catenary impedance

A study on neutral section device adopted in the catenary system with maximum speed of 200km/h (최대 200km/h로 속도 향상된 Catenary system에 적용한 절연구분장치)

  • Ahn Young-Hoon;Gang Chang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.541-546
    • /
    • 2003
  • The study is about a neutral section device adopted in the catenary system in connection with KNR's project to electrify the conventional Honam-Line. A neutral section device(PTFE type) adopting into catenary system accepts a train velocity of 200km/h, installed firstly in Korea electric. railway system. This study shows technologies and construction cases of the neutral section device.

  • PDF