• Title/Summary/Keyword: Catenary Cable

Search Result 64, Processing Time 0.022 seconds

An Improved Finite Element for Structural Analysis of Cable-Supported Structures (케이블 지지구조물의 구조해석을 위한 개선된 유한요소)

  • 김선훈;최창근;송명관
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.117-125
    • /
    • 2001
  • 본 논문에서는 케이블 지지구조물의 비선형 정적해석과 동적해석에 사용할 수 있는 개선된 유한요소가 제시되었다. 케이블의 모델화를 위해 등가탄성계수를 사용하고 처짐곡선을 현수선함수로 가정한 케이블요소가 제안되었다. 프레임 부재에 사용되는 안정함수는 수치적으로 안정한 해를 얻기 위하여 수정되었다. 본 논문에서 제안한 요소의 유용성과 효율성을 검토하기 위하여 다양한 검증문제에 대한 수치해석이 수행되었다. 해석결과 본 논문에서 제시한 유한요소는 케이블 지지구조물의 모델화에 매우 유용하고 효율적으로 사용될 수 있을 것으로 판단된다.

  • PDF

An Analysis on the Stability for Pylon Types of Cable-Stayed Bridge (사장교 주탑 형상에 따른 안정해석)

  • 임정열;윤영만;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.246-252
    • /
    • 2000
  • The nonlinearity of a cable-stayed bridge results in the large displacement of main girder due to a long span, the large axial forces reduce the catenary action of cables and the flexural stiffness. Therefore, the static and dynamic behavior of pylon for a cable-stayed bridge plays an important role in determining its safety. This study was performed to find the behavior of pylon of cable-stayed bridge for the first-order analysis considering of axial load only and for the second-order analysis considering of lateral deflection due to axial load. The axial force and moment values of pylon were different from the results of the first-order analysis and second-order analysis according to pylon shape and cross beam stiffness when the pylon was subjected to earthquake and wind loads. In the second-order analysis, comparing the numerical values of the member forces for the dynamic analysis, types 3 and 4 (A type) were relatively more advantageons types than types 1 and 2 (H type). Considering the stability for pylon of cable-stayed bridge (whole structural system), types 3 and 4 (A type) with pre-buckling of girder were proper types than types 1 and 2 (H type) with buckling of pylon.

  • PDF

A Study on a Nonlinear Cable Finite Element (非線形 케이블 有限要素에 관한 硏究)

  • 장승필;박정일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1989
  • A geometrically nonlinear cable finite element is presented to use in the static or dynamic modeling of offshore and onshore structures such as guyed tower, tension leg platform or mooring buoy, submarine cable, cable-stayed bridge, suspension bridge, cable roof and so on. The cable finite element is derived directly from the compatibility equations and flexibility matrix of elastic catenary cable theory for the arbitary plane loading and geome try. A general and virsatile computer program has been developed to perform the analyses of cable member itself or cable guyed or suspened structures, in which Newmark-$\beta$ method is used to obtain a time domain solution and Newton-Raphson iteration method is used to solve the nonlinear system of compatibility equations of cable and algebraic static or dynamic equations at each time step. The results from the static and dynamic analysis of a cable member by the computer program are summarized and presented.

  • PDF

Numerical characterization of real railway overhead cables

  • Sanchez-Rebollo, Cristina;Velez, Enrique;Jimenez-Octavio, Jesus R.
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2015
  • This paper presents a numerical characterization of real railway overhead cables based on computational fluid dynamics (CFD). Complete analysis of the aerodynamic coefficients of this type of cross section yields a more accurate modelling of pressure loads acting on moving cables than provided by current approaches used in design. Thus, the characterization of certain selected commercial cables is carried out in this work for different wind speeds and angles of attack. The aerodynamic lift and drag coefficients are herein determined for two different types of grooved cables, which establish a relevant data set for the railway industry. Finally, the influence of this characterization on the fluid-structure interaction (FSI) is proved, the static behavior of a catenary system is studied by means of the finite element method (FEM) in order to analyze the effect of different wind angles of attack on the stiffness distribution.

Dynamic Modeling and Analysis of a High Mobility Tracked Vehicle (고속 궤도차량의 동역학적 모델링 및 해석)

  • Lee, Byung-Hoon;Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1486-1493
    • /
    • 2006
  • This paper presents a dynamic model of a high mobility tracked vehicle composed of rigid bodies. Track is modeled as an extensible cable and the track tension between the sprocket and roller is calculated by the catenary equation. The ground force acting on a road wheel is calculated by the Bekker's pressure-sinkage relationship using the segmented wheel model. System equations of motion and constraint acceleration equations are derived in the joint coordinate space using the velocity transformation method.

Safety Assurance of Dropper Clamp in Overhead Catenary System(I) (전차선로 드롭바 클램프 안전성 확보(I))

  • Lee, Ki-Won;Cho, Yong-Hyeon;Park, Young;Min, Byung-Il;Kwon, Sam-Young;Seok, Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.223-226
    • /
    • 2007
  • In the electrical railway, for the improvement of a train speed, it is necessary to study not only the dynamic behaviors of overhead catenary system but the fatigue behaviors of components for a safety assurance according to the increase of vibration level. One of the critical components in the system is a dropper. Therefore, the dynamic force acting on a dropper was measured in the Chungbuk Line and analyzed to figure out the dynamic characteristics the dropper. And in order to assure the safety of dropper clamp and cable, we proposed a test facility as well as test method based on the test results For the further study, we will measure the dynamic forces in the conventional line and high-speed line and make up the test condition, so that the safety of dropper clamps can be assured.

  • PDF

Initial Equilibrium State Analysis of Cable Stayed Bridges Considering Axial Deformation (축방향 변형을 고려한 사장교의 초기평형상태 해석)

  • Kim, Je Choon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2002
  • The study proposed the initial equilibrium state analysis method that considers axial deformation, in order to accurately determine the initial shape of a cable-stayed bridge. Sepecifically, the proposed method adopted the successive iteration method. In order to evaluate appropriate initial cable force introduced in the initial equilibrium state analysis, parametric studies were performed and a useful linear analysis method proposed. The geometrically nonlinear static behaviors of cable-stayed bridges were considered, using three-dimensional frame element and elastic catenary cable element. The usefulness and applicability of the analytic method proposed in this study were demonstrated using numerical examples, including a real cable-stayed bridge. The algorithm, is applicable in cases wherein axial deformation is not adopted in the fabrication camber, or final cable force is adjusted to eliminate construction and fabrication errors occurring during construction.

Comparison Study of An Improved Initial Force and TCUD Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 개선된 초기부재력법 및 TCUD법의 비교연구)

  • Kim, Dong-Yeong;Jo, Kyeong-Sik;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and bending moments of the deck and pylon. Comparison study of an improved initial force method and TCUD method for determination of initial cable forces in cable-stayed bridges is presented in this paper. For this purpose, an elastic catenary cable element and a nonlinear frame element are firstly described. And concepts and algorithm of two analysis methods are then presented. Finally to demonstrate the validity and the accuracy of two methods, numerical examples for initial state problems of cable-stayed bridges are given and compared based on these methods.

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

Analysis of Effects of Mooring Connection Position on the Dynamic Response of Spar type Floating Offshore Wind Turbine (계류장치 연결 위치가 Spar Type 부유식 해상풍력 발전기의 동적 응답에 미치는 영향 해석)

  • Cho, Yanguk;Cho, Jinrae;Jeong, Weuibong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.407-413
    • /
    • 2013
  • This paper deals with the analysis of dynamic characteristics of mooring system of floating-type offshore wind turbine. A spar-type floating structure which consists of a nacelle, a tower and the platform excepting blades, is used to model the floating wind turbine and connect three catenary cables to substructure. The motion of floating structure is simulated when the mooring system is attached using irregular wave Pierson-Moskowitz model. The mooring system is analyzed by changing cable position of floating structure. The dynamic behavior characteristics of mooring system are investigated comparing with cable tension and 6-dof motion of floating structure. These characteristics are much useful to initial design of floating-type structure. From the simulation results, the optimized design parameter that is cable position of connect point of mooring cable can be obtained.