• 제목/요약/키워드: Catalytic Layer

검색결과 173건 처리시간 0.028초

Selective Catalytic Etching of Graphene by SiOx Layer Depletion

  • 이경재;임규욱;양미현;강태희;정석민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2014
  • We report catalytic decomposition of few-layer graphene on an $Au/SiO_x/Si$ surface wherein oxygen is supplied by dissociation of the native $SiO_x$ layer at a relatively low temperature of $400^{\circ}C$. The detailed chemical evolution of the graphene covered $SiO_x/Si$ surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native $SiO_x$ layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a $SiO_x$ layer could realize a new way to micromanufacture high-quality electrical contact.

  • PDF

자체 예열식 촉매 열 교환식 연소특성 (The Combustion Characteristice of the Self Preheating Type Catalyic Heat Exchanger)

  • 유상필;송광섭;서용석;조성준;류인수
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2001년도 춘계 학술발표회 논문집
    • /
    • pp.45-52
    • /
    • 2001
  • 촉매연소의 응용기기 개발을 위한 연구의 일환으로, 촉매연소가 도입된 열교환기에 대한 연소특성을 분석하였다. 정상상태에서 촉매연소를 이용한 혼합가스의 예열과 가열매체에 대한 열 공급이 동시에 이루어지도록 장치를 구성하고, 특성실험을 수행하였다. 혼합가스의 예열온도, 유속, 당량비 등에 대한 연소특성을 분석하고, 촉매 층의 온도분포에 따른 연소특성도 살펴보았다. 제한된 온도범위 내에서 연소반응이 정상상태에 도달되는 것은 촉매연소 기기 개발에 매우 중용한 요소이며, 이를 위해서 혼합가스의 예열온도, 유속 당량비 등이 일정한 범위에서 제어되어야 하고, 촉매 층의 열평형이 이루어져야 됨을 알았다.

  • PDF

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa;Won Jongok;Oh In Hwan;Ha Heung Yong;Cho Eun Ae;Kang Yong Soo
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.101-106
    • /
    • 2006
  • The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.

Study of CVD Growth Single-walled Carbon Nanotubes via Catalytic Layer Supported by Self-assembled Monolayer

  • Adhikari, Prashanta Dhoj;Kim, Sung-Hwan;Song, Woo-Seok;Lee, Su-Il;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.402-402
    • /
    • 2012
  • Bundles of single-walled carbon nanotube (SWCNTs) were grown using catalytic layer supported by self-assembled monolayers (SAMs). Amine-SAMs were introduced on SiO2/Si substrate (SAMs/Si) there then iron nanoclusters solution was dropped on it through spin-coating (Fe/SAMs/Si). This catalytic template was used to grow CNTs and the synthesized carbon material was confirmed the bundles of dense SWCNTs with incorporation of ca.1% nitrogen. The SAMs has played an active role to support catalytic layer and also acted as a source of N-dope onto SWCNTs in CVD.

  • PDF

스크린 프린팅법을 이용하여 제조된 고분자 전해질 연료전지에서 MEA(조합 막 전극)의 특성 (Characteristics of Fabricated MEA(Membrane Electrode Assembly) on Polymer Electrolyte Membrane Fuel Cell Made by the Screen Printing Method)

  • 임재욱;최대규;류호진
    • 반도체디스플레이기술학회지
    • /
    • 제2권4호
    • /
    • pp.27-30
    • /
    • 2003
  • The effect of fabrication method of catalytic layer on electrode performance has been investigated. Brush, spray gun and screen printer were used as fabrication tool and catalytic layers were formed by several methods in screen printing. Direct screen printing on polymer membrane, screen printing on carbon paper, and their combined method were applied. In the electrode fabricated by the screen printing method, Pt loading of Pt/C catalysts could be cut down to 50%, compared with results by the brushing and spraying methods. The best result of electrode was obtained as 0.6 V, at 1 A/$\textrm{cm}^2$ when catalytic layer was formed by the combined way.

  • PDF

탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향 (The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length)

  • 홍순규;이형우
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

A Spontaneous Growth of a Diaphorase Enzyme Layer over a Gold Electrode for the Catalytic Reduction of $NAD^+$

  • 김소형;윤세옥;강찬
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권11호
    • /
    • pp.1192-1196
    • /
    • 2001
  • A diaphorase enzyme electrode for the catalytic reduction of NAD+ , the oxidized form of nicotinamide adenine dinucleotide, has been prepared. The enzyme layer grew spontaneously over an aminoethanethiol self assembled monolayer on a go ld plate electrode. The growth was accomplished by simply dipping the electrode covered by the aminoethanethiol monolayer into a solution containing both glutaraldehyde and diaphorase. We suggested that the glutaraldehyde as a cross-linking reagent was attached to the amino groups of the aminoethanethiol monolayer and the diaphorase enzyme molecules were bound to free aldehyde groups of the glutaraldehyde. Further attachments of the enzyme molecules over the bound enzyme molecules continued with the bridging of the glutaraldehyde. In frequency measurements with a quartz crystal microbalance, the frequency decrease was much more than it was for that of the enzyme monolayer formation, and an enzyme layer thicker than a monolayer was formed. The modified electrode was employed to reduce NAD+ , using diffusional methyl viologen as an electron transfer mediator. The NAD+ was electrocatalytically reduced, and the catalytic current was almost equivalent to that with the multilayered electrode of ten enzyme layers.

Synthesis of diameter-controlled carbon nanotubes via structural modification of Al2O3 supporting layer

  • Kim, Soo-Youn;Song, Woo-Seok;Kim, Min-Kook;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.286-286
    • /
    • 2010
  • The lack of homogeneously sized single-walled carbon nanotubes (SWNTs) hinders their many applications because properties of SWNTs, in particular electrical conduction, are highly dependent on the diameter and chirality. Therefore, the preferential growth of SWNTs with predetermined diameters is an ultimate objective for applications of SWNTs-based nanoelectronics. It has been previously emphasized that a catalyst size is the one crucial factor to determine the CNTs diameter in chemical vapor deposition (CVD) process, giving rise to several attempts to obtain size-controllable catalyst by diverse methods, such as solid supported catalyst, metal-containing molecular nanoclusters, and nanostructured catalytic layer. In this work, diameter-controlled CNTs were synthesized using a nanostructured catalytic layer consisting of Fe/Al2O3/Si substrate. The CNTs diameter was controlled by structural modification of Al2O3 supporting layer, because Al2O3 supporting layer can affect agglomeration phenomenon induced by heat-driven surface diffusion of Fe catalytic nanoparticles at growth temperature.

  • PDF

극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰 (Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods)

  • 김익현;양요셉
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.33-41
    • /
    • 2023
  • This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

Controlled Synthesis of Single-Walled Carbon Nanotubes

  • Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.2-2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWNTs) have been considered as a promising candidate for nextgeneration electronics due to its extraordinary electrical properties associated with one-dimensional structure. Since diversity in electronic structure depends on geometrical features, the major concern has been focused on obtaining the diameter, chirality, and density controlled SWNTs. Despite huge efforts, the controlled synthesis of SWNTs has not been achieved. There have been various approaches to synthesize controlled SWNTs by preparation of homogeneously sized catalyst because the SWNTs diameter highly depends on catalyst nanoparticles size. In this study, geometrically controlled SWNTs were synthesized using designed catalytic layers: (a) morphologically modified Al2O3 supporting layer (Fe/Al2O3/Si), (b) Mo capping layer (Mo/Fe/Al/Si), and (c) heat-driven diffusion and subsequent evaporation process of Fe catalytic nanoparticles (Al2O3/Fe/Al2O3/Si). These results clearly revealed that (a) the grain diameter and RMS roughness of Al2O3 supporting layer play a key role as a diffusion barrier for obtaining Fe nanoparticles with a uniform and small size, (b) a density and diameter of SWNTs can be simultaneously controlled by adjusting a thickness of Mo capping layer on Fe catalytic layer, and (c) SWNTs diameter was successfully controlled within a few A scale even with its fine distribution. This precise control results in bandgap manipulation of the semiconducting SWNTs, determined by direct comparison of Raman spectra and theory of extended tight binding Kataura plot. We suggest that these results provide a simple and possible way for the direct growth of diameter, density, and bandgap controlled SWNTs by precise controlling the formation of catalytic films, which will be in demand for future electronic applications.

  • PDF