• Title/Summary/Keyword: Catalytic Fin

Search Result 8, Processing Time 0.03 seconds

THE COMBUSTION CHARACTERISTICS OF THE CATALYTIC HEAT EXCHANGER WITH FIN TUBES (핀 튜브를 이용한 촉매 열 교환기의 연소특성)

  • Yu, Sang-Phil;Seo, Yong-Seog;Cho, Sung-June;Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.169-177
    • /
    • 2000
  • The catalytic heat exchanger, which integrates two functions of heat generation and heat exchange into one equipment, was designed and its characteristics were investigated by the experiment and numerical simulation. The surface of the fin tube was deposited with Pd catalyst. The conversion of the mixture in the catalytic heat exchanger was more significantly affected by the inlet velocity of the mixture than by the inlet temperature and equivalence ratio of the mixture. It was found that the catalytic surface area of the fin tubes should be sufficiently increased to make the combustion intensity of the catalytic heat exchanger as high as possible. Results showed that the fin tubes, placed in the triangularly staggered form, should be adjusted so that the mixture flows uniformly over all the catalytic fin surfaces. Numerical simulation results demonstrated that the flow pattern of the mixture significantly affected the conversion of the mixture.

  • PDF

The Catalytic heat Exchanger of Catalytic Fins Deposited With PD Catalyst (Pd 촉매 담지핀을 이용한 촉매 열 교환기의 특성분석 실험)

  • 유상필;서용석;정남조;유인수;조성준
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.209-214
    • /
    • 2000
  • The catalytic heat exchanger, which integrates two functions of heat generation and heat exchange into one equipment, was designed and its characteristics were investigated by experiments. The surface of the fin tube was deposited with Pd catalyst. The conversion of the mixture in the catalytic heat exchanger was more significantly affected by the inlet velocity of the mixture than by the inlet temperature and equivalence ratio of the mixture. It was found that the catalytic surface area of the fin tubes should be sufficiently increased to make the combustion intensity of the catalytic heat exchanger as high as possible. Results showed that the fin tubes, placed in the triangularly staggered form, should be adjusted so that the mixture flows uniformly over all the catalytic fin surfaces.

  • PDF

Development of a Catalytic Heat Exchanger (촉매연소 열교환기 개발)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Seo, Yong-Seog;Cho, Sung-June;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.63-69
    • /
    • 1999
  • The heat exchanger using the catalytic combustion can be applied to petrochemical processes and to VOC incineration facilities. In this work, the experiment for a new fin typed catalytic heat exchanger was conducted. Catalysts for the heat exchanger were determined by testing their catalytic activities over LPG in a micro-reactor. Based on experimental results of the fin typed catalytic heat exchanger, a small scaled heat exchange system was made to test its feasibility as a reboiler used in petrochemical processes. The results showed that the catalytic heat exchanger could combust off-gases effectively and at the same time could recover completely heat produced by catalytic combustion.

  • PDF

Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor (마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구)

  • Jung, Ki Moon;Choi, Seok Hyun;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.381-387
    • /
    • 2017
  • Dehydrogenation from the hydrolysis of a sodium borohydride ($NaBH_4$) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a $NaBH_4$ solution over both a single microchannel with a hydraulic diameter of $300{\mu}m$ and a staggered array of micro pin fins in the microchannel with hydraulic diameter of $50{\mu}m$. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

The Development of Catalytic Combustor With Heat Exchanger

  • Phil, Yu-Sang;Seok, Seo-Yong;Seop, Song-Kwang
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.21-27
    • /
    • 2002
  • Catalytic combustor with heat exchangers are often employed in process technology where a compact design is required [1]. The use of fin and tube heat exchanger offers the enhanced surface area for heat exchange. The recent progress and performance of the fin-tube heat exchanger, especially airside, has been reviewed extensively by Wang[2].(Omitted)

  • PDF

A Study on the Catalytic Ortho-Para Hydrogen Conversion in the Cryogenic Heat Exchanger Filled with Catalysts for Hydrogen Liquefaction (수소액화용 극저온 열교환기 내 촉매 수소 전환반응에 관한 연구)

  • SOHN, SANGHO;YOON, SEOK HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.180-188
    • /
    • 2021
  • This paper conducted a study on the ortho-para hydrogen conversion in the cryogenic heat exchanger filled with catalysts for hydrogen liquefaction by utilizing the numerical model of plate-fin heat exchanger considering catalytic reaction of ortho-para hydrogen conversion, heat and mass transfer phenomena and fluid dynamics in a porous medium. Various numerical analyzes were performed to investigate the characteristics of ortho-para hydrogen conversion, the effects of space velocity and activated catalyst performance.

Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine (가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화)

  • Lee, Seok-Hwan;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

Molecular Characterization of FprB (Ferredoxin-$NADP^+$ Reductase) in Pseudomonas putida KT2440

  • Lee, Yun-Ho;Yeom, Jin-Ki;Kang, Yoon-Suk;Kim, Ju-Hyun;Sung, Jung-Suk;Jeon, Che-Ok;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1504-1512
    • /
    • 2007
  • The fpr gene, which encodes a ferredoxin-$NADP^+$ reductase, is known to participate in the reversible redox reactions between $NADP^+$/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at al. (2006). Biochem. Biophys. Res. Commun. 339, 1246-1254]. In the genome of P. putida KT2440, another Fpr homolog (FprB) has a 35.3% amino acid identity with Fpr. The fprB gene was cloned and expressed in Escherichia coli. The diaphorase activity assay was conducted using purified FprB to identify the function of FprB. In contrast to the fpr gene, the induction of fprB was not affected by oxidative stress agents, such as paraquat, menadione, $H_2O_2$, and t-butyl hydroperoxide. However, a higher level of fprB induction was observed under osmotic stress. Targeted disruption of fprB by homologous recombination resulted in a growth defect under high osmotic conditions. Recovery of oxidatively damaged aconitase activity was faster for the fprB mutant than for the fpr mutant, yet still slower than that for the wild type. Therefore, these data suggest that the catalytic function of FprB may have evolved to augment the function of Fpr in P. putida KT2440.