DOI QR코드

DOI QR Code

수소액화용 극저온 열교환기 내 촉매 수소 전환반응에 관한 연구

A Study on the Catalytic Ortho-Para Hydrogen Conversion in the Cryogenic Heat Exchanger Filled with Catalysts for Hydrogen Liquefaction

  • 손상호 (한국기계연구원 에너지기계연구본부 열시스템연구실) ;
  • 윤석호 (한국기계연구원 에너지기계연구본부 열시스템연구실)
  • SOHN, SANGHO (Department of Thermal Systems, Korea Institute of Machinery and Materials) ;
  • YOON, SEOK HO (Department of Thermal Systems, Korea Institute of Machinery and Materials)
  • 투고 : 2021.06.14
  • 심사 : 2021.06.23
  • 발행 : 2021.06.30

초록

This paper conducted a study on the ortho-para hydrogen conversion in the cryogenic heat exchanger filled with catalysts for hydrogen liquefaction by utilizing the numerical model of plate-fin heat exchanger considering catalytic reaction of ortho-para hydrogen conversion, heat and mass transfer phenomena and fluid dynamics in a porous medium. Various numerical analyzes were performed to investigate the characteristics of ortho-para hydrogen conversion, the effects of space velocity and activated catalyst performance.

키워드

과제정보

본 연구는 2021년 국토교통부 재원으로 국토교통과학기술진흥원 국가연구개발사업인 상용급 액체수소 플랜트 핵심기술 개발 사업의 지원을 받아 수행중인 연구과제(수소액화용 극저온 열교환기 개발)의 연구결과물입니다(No. 21IHTP-B151598-03).

참고문헌

  1. O. Wilhelmsen, D. Berstad, A. Aasen, P. Neksa, and G. Skaugen, "Reducing the exergy destruction in the cryogenic heat exchangers of hydro liquefaction processes", Int. J. Hydrogen Energy, Vol. 43, No. 10, 2018, pp. 5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.
  2. J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E. W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, pp. 721-748, doi: https://doi.org/10.1063/1.3160306.
  3. M. Lipman, H. Cheung, and O. P. Roberts, "Continuous conversion hydrogen liquefaction", Chem. Eng. Prog., Vol. 59, 1963, pp. 49-54.
  4. P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic orthopara hydrogen conversion during liquefaction", Chem. Eng. Technol., Vol. 42, No. 3, 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.
  5. Y. Liang and J. Yonglin, "Review on the design and optimization of hydrogen liquefaction processes", Front. Energy, Vol. 14, 2020, pp. 530-544, doi: https://doi.org/10.1007/s11708-019-0657-4.
  6. J. Park, H. Lim, G. H. Rhee, and S. W. Karng, "Catalyst filled heat exchanger for hydrogen liquefaction", Int. J. Heat and Mass Transfer, Vol. 170, 2021, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121007.
  7. ANSYS, "Fluent theory manual", 2013.
  8. H. L. Hutchinson, L. F. Brown, and P. L. Barrick, "A comparison of rate expressions for the low-temperature para-orthohydrogen shift", Advances in Cryogenic Eng., Vol. 16, 1970, pp. 96-103, doi: https://doi.org/10.1007/978-1-4757-0244-6_12.
  9. H. L. Hutchinson, P. L. Barrick, and L. F. Brown, "Experimental study of reaction kinetics for para-orthohydrogen at 20° to 80°K", Advances in Cryogenic Eng., Vol. 10, 1965, pp. 190-196, doi: https://doi.org/10.1007/978-1-4684-3108-7_21.
  10. T. Kim, B. I. Choi, Y. S. Han, and K. H Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pilot plant with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.